The Cauchy problem for the diffusion-wave equation with the Caputo partial derivative

被引:27
|
作者
Voroshilov, A. A. [1 ]
Kilbas, A. A. [1 ]
机构
[1] Belarusian State Univ, Minsk, BELARUS
关键词
Cauchy Problem; Fundamental Solution; Fractional Calculus; Fractional Caputo Derivative; Caputo Derivative;
D O I
10.1134/S0012266106050041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:638 / 649
页数:12
相关论文
共 50 条
  • [21] Determining a time-dependent coefficient in a time-fractional diffusion-wave equation with the Caputo derivative by an additional integral condition
    Wei, Ting
    Xian, Jun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404
  • [22] One Inverse Problem for the Diffusion-Wave Equation in Bounded Domain
    A. O. Lopushanskyi
    H. P. Lopushanska
    Ukrainian Mathematical Journal, 2014, 66 : 743 - 757
  • [23] Cauchy problem for fractional evolution equations with Caputo derivative
    Y. Zhou
    X. H. Shen
    L. Zhang
    The European Physical Journal Special Topics, 2013, 222 : 1749 - 1765
  • [24] The cauchy problem for differential equations with fractional caputo derivative
    Kilbas, AA
    Marzan, SA
    DOKLADY MATHEMATICS, 2004, 70 (03) : 841 - 845
  • [25] SOME CLOSED FORM SERIES SOLUTIONS FOR THE TIME-FRACTIONAL DIFFUSION-WAVE EQUATION IN POLAR COORDINATES WITH A GENERALIZED CAPUTO FRACTIONAL DERIVATIVE
    Elkott, Ibrahim
    Latif, Mohamed S. Abdel
    El-Kalla, Ibrahim L.
    Kader, Abass H. Abdel
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2023, 22 (02) : 5 - 14
  • [26] Cauchy problem for fractional evolution equations with Caputo derivative
    Zhou, Y.
    Shen, X. H.
    Zhang, L.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (08): : 1749 - 1765
  • [27] On a Non–Local Problem for a Multi–Term Fractional Diffusion-Wave Equation
    Michael Ruzhansky
    Niyaz Tokmagambetov
    Berikbol T. Torebek
    Fractional Calculus and Applied Analysis, 2020, 23 : 324 - 355
  • [28] Problem of Determining the Time Dependent Coefficient in the Fractional Diffusion-Wave Equation
    Z. A. Subhonova
    A. A. Rahmonov
    Lobachevskii Journal of Mathematics, 2021, 42 : 3747 - 3760
  • [29] Problem of Determining the Time Dependent Coefficient in the Fractional Diffusion-Wave Equation
    Subhonova, Z. A.
    Rahmonov, A. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (15) : 3747 - 3760
  • [30] On inverse problem for linear and semilinear diffusion equation with Caputo-Fabrizio derivative
    Hoang Luc, Nguyen
    Singh, Jagdev
    Nguyen Pham, Quynh Trang
    Thi Kim Van, Ho
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021,