A novel parallel multi-swarm algorithm based on comprehensive learning particle swarm optimization

被引:84
|
作者
Gulcu, Saban [1 ]
Kodaz, Halife [2 ]
机构
[1] Necmettin Erbakan Univ, Dept Comp Engn, TR-42090 Meram Konya, Turkey
[2] Selcuk Univ, Dept Comp Engn, Konya, Turkey
关键词
Particle swarm optimization; Parallel algorithm; Comprehensive learning particle swarm optimizer; Global optimization; GLOBAL OPTIMIZATION; DESIGN OPTIMIZATION;
D O I
10.1016/j.engappai.2015.06.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presented a parallel metaheuristic algorithm based on the Particle Swarm Optimization (PSO) to solve global optimization problems. In recent years, many metaheuristic algorithms have been developed. The PSO is one of them is very effective to solve these problems. But PSO has some shortcomings such as premature convergence and getting stuck in local minima. To overcome these shortcomings, many variants of PSO have been proposed. The comprehensive learning particle swarm optimizer (CLPSO) is one of them. We proposed a better variation of CLPSO, called the parallel comprehensive learning particle swarm optimizer (PCLPSO) which has multiple swarms based on the master-slave paradigm and works cooperatively and concurrently. The PCLPSO algorithm was compared with nine PSO variants in the experiments. It showed a great performance over the other PSO variants in solving benchmark functions including their large scale versions. Besides, it solved extremely fast the large scale problems. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 50 条
  • [1] A Parallel Multi-swarm Particle Swarm Optimization Algorithm Based on CUDA Streams
    Ma, Xuan
    Han, Wencheng
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 3002 - 3007
  • [2] A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm optimization
    Yazdani, Danial
    Nasiri, Babak
    Sepas-Moghaddam, Alireza
    Meybodi, Mohammad Reza
    APPLIED SOFT COMPUTING, 2013, 13 (04) : 2144 - 2158
  • [3] Gait Optimization for Multiple Humanoid Robots Based on Parallel Multi-swarm Particle Swarm Algorithm
    Li, Chunguang
    He, Rongyi
    Yao, Lina
    Tao, Chongben
    PROCEEDINGS OF THE 14TH EAI INTERNATIONAL CONFERENCE ON MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES (MOBIQUITOUS 2017), 2017, : 11 - 19
  • [4] A novel multi-swarm particle swarm optimization with dynamic learning strategy
    Ye, Wenxing
    Feng, Weiying
    Fan, Suohai
    APPLIED SOFT COMPUTING, 2017, 61 : 832 - 843
  • [5] Multi-swarm particle swarm optimization based on autonomic learning and elite swarm
    Jiang, Hai-Yan
    Wang, Fang-Fang
    Guo, Xiao-Qing
    Zhuang, Jia-Xiang
    Kongzhi yu Juece/Control and Decision, 2014, 29 (11): : 2034 - 2040
  • [6] A modified hybrid particle swarm optimization based on comprehensive learning and dynamic multi-swarm strategy
    Wang, Rui
    Hao, Kuangrong
    Chen, Lei
    Liu, Xiaoyan
    Zhu, Xiuli
    Zhao, Chenwei
    SOFT COMPUTING, 2024, 28 (05) : 3879 - 3903
  • [7] A modified hybrid particle swarm optimization based on comprehensive learning and dynamic multi-swarm strategy
    Rui Wang
    Kuangrong Hao
    Lei Chen
    Xiaoyan Liu
    Xiuli Zhu
    Chenwei Zhao
    Soft Computing, 2024, 28 : 3879 - 3903
  • [8] Multi-swarm Optimization Algorithm Based on Firefly and Particle Swarm Optimization Techniques
    Kadavy, Tomas
    Pluhacek, Michal
    Viktorin, Adam
    Senkerik, Roman
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 405 - 416
  • [9] Dynamic Multi-Swarm Particle Swarm Optimization Based on Elite Learning
    Xia, Xuewen
    Tang, Yichao
    Wei, Bo
    Gui, Ling
    IEEE ACCESS, 2019, 7 : 184849 - 184865
  • [10] Dynamic Multi-swarm Particle Swarm Optimization Based on Mite Learning
    Tang, Yichao
    Wei, Bo
    Xia, Xuewen
    Gui, Ling
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2311 - 2318