Wastewater treatment and bioelectricity production in microbial fuel cell: salt bridge configurations

被引:14
|
作者
Sivakumar, D. [1 ]
机构
[1] Kalasalingam Acad Res & Educ, Dept Agr Engn, Krishnankoil 626126, Tamil Nadu, India
关键词
Analysis of variance; Biodegradation; Dairy industry wastewater; Process parameters; Signal-to-noise ratio; Taguchi method; PROTON-EXCHANGE MEMBRANE; HEXAVALENT CHROMIUM; PERFORMANCE; ELECTRICITY; GENERATION; PARAMETERS; REMOVAL; DESIGN;
D O I
10.1007/s13762-020-02864-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study obtained the maximum pollutant reduction and power production from the dairy industry wastewater using double-chambered salt bridge microbial fuel cell by the Taguchi method. The maximum removal of chemical oxygen demand from dairy industry wastewater was found to be 89.7% in double-chambered salt bridge microbial fuel cell. Similarly, the current, voltage, power, current density and power density obtained in double-chambered salt bridge microbial fuel cell from dairy industry wastewater were 17.28 mA, 815.32 mV, 14.09 mW, 1309.09 mA/m(2) and 1067.33 mW/m(2), respectively. The maximum removal of chemical oxygen demand and power production was observed for the process parameters viz., 1 M KCl concentration, 10% agarose concentration, and 0.05 m salt bridge. It may be pointed out from the analysis of variance that the order of prevailing process parameters was agarose concentration followed by KCl molar concentration and salt bridge length for getting the maximum pollutants reduction and power production from dairy industry wastewater using double-chambered salt bridge microbial fuel cell. The other pollutants viz., TSS, TDS, BOD, COD, nitrate, phosphate, sulphate, chloride, ammonia, and oil and grease in a dairy industry wastewater also reduced to the maximum for the best-optimized process parameters of 1 M KCl concentration, 10% agarose concentration, and 0.05 m salt bridge. The regression model obtained in this study was utilized to select the appropriate combination of process parameters for obtaining the required maximum reduction of pollutants and simultaneous power production. Thus, this study suggested that double-chambered salt bridge microbial fuel cell can be performed well for maximum pollutant reduction and simultaneous power production for the appropriate process parameters value from any wastewater.
引用
收藏
页码:1379 / 1394
页数:16
相关论文
共 50 条
  • [1] Wastewater treatment and bioelectricity production in microbial fuel cell: salt bridge configurations
    D. Sivakumar
    [J]. International Journal of Environmental Science and Technology, 2021, 18 : 1379 - 1394
  • [2] Wastewater remediation and bioelectricity generation in dual chambered salt bridge microbial fuel cell: A mini-review
    Iberahim, Nur Izzati
    Lutpi, Nabilah Aminah
    Ho, Li-Ngee
    Wong, Yee-Shian
    Ong, Soon-An
    Dahalan, Farrah Aini
    [J]. ENVIRONMENTAL QUALITY MANAGEMENT, 2024, 34 (01)
  • [3] Concomitant production of bioelectricity and hydrogen peroxide leading to the holistic treatment of wastewater in microbial fuel cell
    Das, Sovik
    Mishra, Ashish
    Ghangrekar, M. M.
    [J]. CHEMICAL PHYSICS LETTERS, 2020, 759
  • [4] Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in Microbial Fuel Cell
    Elakkiya, E.
    Matheswaran, Manickam
    [J]. BIORESOURCE TECHNOLOGY, 2013, 136 : 407 - 412
  • [5] Simultaneous generation of Bioelectricity and Treatment of Swine wastewater in a Microbial Fuel Cell
    Egbadon, Emmanuel O.
    Akujobi, Campbell O.
    Nweke, Chris O.
    Braide, Wesley
    Akaluka, Cynthia K.
    Adeleye, Samuel A.
    [J]. INTERNATIONAL LETTERS OF NATURAL SCIENCES, 2016, 54 : 100 - 107
  • [6] Earthen Pot-Plant Microbial Fuel Cell Powered by Vetiver for Bioelectricity Production and Wastewater Treatment
    Regmi, Roshan
    Nitisoravut, Rachnarin
    Charoenroongtavee, Sirada
    Yimkhaophong, Woraluk
    Phanthurat, Ornnicha
    [J]. CLEAN-SOIL AIR WATER, 2018, 46 (03)
  • [7] Simultaneous dairy wastewater treatment and bioelectricity production in a new microbial fuel cell using photosynthetic Synechococcus
    Khodadi, Sahar
    Karbassi, Abdolreza
    Tavakoli, Omid
    Baghdadi, Majid
    Zare, Zeinab
    [J]. INTERNATIONAL MICROBIOLOGY, 2023, 26 (04) : 741 - 756
  • [8] Simultaneous dairy wastewater treatment and bioelectricity production in a new microbial fuel cell using photosynthetic Synechococcus
    Sahar Khodadi
    Abdolreza Karbassi
    Omid Tavakoli
    Majid Baghdadi
    Zeinab Zare
    [J]. International Microbiology, 2023, 26 : 741 - 756
  • [9] Microbial Fuel Cell-Membrane Bioreactor Integrated System for Wastewater Treatment and Bioelectricity Production: Overview
    Li, Tao
    Cai, Yun
    Yang, Xiao-Li
    Wu, Yan
    Yang, Yu-Li
    Song, Hai-Liang
    [J]. JOURNAL OF ENVIRONMENTAL ENGINEERING, 2020, 146 (01)
  • [10] Bioelectricity Production using Microbial Fuel Cell
    Chirag, Shah K.
    Yagnik, B. N.
    [J]. RESEARCH JOURNAL OF BIOTECHNOLOGY, 2013, 8 (03): : 84 - 90