Pore-scale flow simulation in anisotropic porous material via fluid-structure coupling

被引:1
|
作者
Li, Chen [1 ]
Wang, Changbo [1 ]
Zhang, Shenfan [1 ]
Qiu, Sheng [1 ]
Qin, Hong [2 ]
机构
[1] East China Normal Univ, Sch Comp Sci & Software Engn, Shanghai, Peoples R China
[2] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
Anisotropic porous material; Particle finite element method; Fluid-structure coupling; Realistic simulation; SMOOTHED PARTICLE HYDRODYNAMICS; FINITE-ELEMENT-METHOD; DYNAMICS; MODELS; MEDIA;
D O I
10.1016/j.gmod.2017.12.001
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper describes a novel hybrid method for fluid simulation of saturating anisotropic porous material via fluid-structure coupling. Our framework employs particle finite element method (PFEM) that not only adopts Lagrangian scheme to model the motion of freely-moving particles, but also produces the extended Delaunay Tessellation to furnish the governing equations with FEM discretization. We first employ adaptive smoothed particle hydrodynamics (SPH) to simulate porous flow respecting the anisotropic permeability with little cost. Second, the extended Delaunay Tessellation is obtained to solve differential equations for skeletal deformation. Third, a hybrid particle system is adopted to track the surface and topological changes. At the physical level, we introduce dynamic permeability considering skeletal deformation via fluid-structure coupling. At the geometric level, PFEM reduces the computational cost and effectively tracks topological changes. Moreover, our implementation on CUDA improves the performance in high-quality physics-based graphics applications. Consequently, the proposed method realistically reproduces interactions between pore-scale flow and anisotropic porous material.
引用
收藏
页码:14 / 26
页数:13
相关论文
共 50 条
  • [1] Pore-scale simulation of flow in minichannels with porous fins
    Gao, Wuhuan
    Xu, Xianghua
    Liang, Xingang
    [J]. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2020, 50 (11): : 1487 - 1496
  • [2] An Orthorhombic Lattice Boltzmann Model for Pore-Scale Simulation of Fluid Flow in Porous Media
    Jiang, Baoliang
    Zhang, Xiaoxian
    [J]. TRANSPORT IN POROUS MEDIA, 2014, 104 (01) : 145 - 159
  • [3] An Orthorhombic Lattice Boltzmann Model for Pore-Scale Simulation of Fluid Flow in Porous Media
    Baoliang Jiang
    Xiaoxian Zhang
    [J]. Transport in Porous Media, 2014, 104 : 145 - 159
  • [4] Pore-scale simulation of laminar flow through porous media
    Piller, M.
    Casagrande, D.
    Schena, G.
    Santini, M.
    [J]. 31ST UIT (ITALIAN UNION OF THERMO-FLUID-DYNAMICS) HEAT TRANSFER CONFERENCE 2013, 2014, 501
  • [5] MODELING AND SIMULATION OF PORE-SCALE MULTIPHASE FLUID FLOW AND REACTIVE TRANSPORT IN FRACTURED AND POROUS MEDIA
    Meakin, Paul
    Tartakovsky, Alexandre M.
    [J]. REVIEWS OF GEOPHYSICS, 2009, 47
  • [6] Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media
    Icardi, Matteo
    Boccardo, Gianluca
    Marchisio, Daniele L.
    Tosco, Tiziana
    Sethi, Rajandrea
    [J]. PHYSICAL REVIEW E, 2014, 90 (01)
  • [7] Pore-scale simulation of flow and mass transfer characteristics of porous particle
    Yang, Xuesong
    Wang, Shuai
    Jin, Hanyu
    He, Yurong
    [J]. CHEMICAL ENGINEERING SCIENCE, 2023, 267
  • [8] Pore-Scale Simulation of Dispersion in Porous Media
    Garmeh, G.
    Johns, R. T.
    Lake, L. W.
    [J]. SPE JOURNAL, 2009, 14 (04): : 559 - 567
  • [9] Dissipative particle dynamics simulation of pore-scale multiphase fluid flow
    Liu, Moubin
    Meakin, Paul
    Huang, Hai
    [J]. WATER RESOURCES RESEARCH, 2007, 43 (04)
  • [10] Investigation of pore geometry influence on fluid flow in heterogeneous porous media: A pore-scale study
    Soltanmohammadi, Ramin
    Iraji, Shohreh
    de Almeida, Tales Rodrigues
    Basso, Mateus
    Munoz, Eddy Ruidiaz
    Vidal, Alexandre Campane
    [J]. ENERGY GEOSCIENCE, 2024, 5 (01):