Index Theory and Non-Commutative Geometry II. Dirac Operators and Index Bundles

被引:15
|
作者
Benameur, Moulay-Tahar [1 ]
Heitsch, James L. [2 ,3 ]
机构
[1] Univ Metz, CNRS, UMR 7122, Metz, France
[2] Univ Illinois, Chicago, IL USA
[3] Northwestern Univ, Evanston, IL 60208 USA
关键词
Non-commutative geometry; foliation; index theory; Dirac operator; index bundle;
D O I
10.1017/is007011012jkt007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
When the index bundle of a longitudinal Dirac type operator is transversely smooth, we define its Chem character in Haefliger cohomology and relate it to the Chem character of the K-theory index. This result gives a concrete connection between the topology of the foliation and the longitudinal index formula. Moreover, the usual spectral assumption on the Novikov-Shubin invariants of the operator is improved.
引用
收藏
页码:305 / 356
页数:52
相关论文
共 50 条