Finite size and dimensional dependence in the Euclidean traveling salesman problem

被引:68
|
作者
Percus, AG
Martin, OC
机构
[1] Division de Physique Théorique, Institut de Physique Nucléaire, Université Paris-Sud, Orsay
关键词
D O I
10.1103/PhysRevLett.76.1188
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Euclidean traveling salesman problem for N cities randomly distributed in the unit d-dimensional hypercube, and investigate the finite size scaling of the mean optimal tour length L(E). With toroidal boundary conditions we find, movtivated by a remarkable universality in the kth nearest neighbor distribution, that L(E)(d = 2) = (0.7120 +/- 0.0002) N-1/2 [1 O +(1/N)] and L(E) (d = 3) = 0.6979 +/- 0.0002) N-2/3 [1 + O(1/N)]. We then consider a mean-field approach in the limit N --> infinity which we find to be a good approximation (the error being less than 2.1 % at d = 1, 2, and 3), and which suggests that L(E)(d) = N-1-1/d root d/2 pi e (pi d)(1/2d)[1 + O(1/d)] at large d.
引用
收藏
页码:1188 / 1191
页数:4
相关论文
共 50 条
  • [1] The noisy Euclidean traveling salesman problem and learning
    Braun, ML
    Buhmann, JM
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 351 - 358
  • [2] Non-euclidean traveling salesman problem
    Saalweachter, John
    Pizlo, Zygmunt
    [J]. DECISION MODELING AND BEHAVIOR IN COMPLEX AND UNCERTAIN ENVIRONMENTS, 2008, 21 : 339 - 358
  • [3] THE TRAVELING SALESMAN PROBLEM UNDER SQUARED EUCLIDEAN DISTANCES
    de Berg, Mark
    van Nijnatten, Fred
    Sitters, Rene
    Woeginger, Gerhard J.
    Wolff, Alexander
    [J]. 27TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2010), 2010, 5 : 239 - 250
  • [4] Hard to solve instances of the Euclidean Traveling Salesman Problem
    Hougardy, Stefan
    Zhong, Xianghui
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2021, 13 (01) : 51 - 74
  • [5] The random link approximation for the Euclidean traveling salesman problem
    Cerf, NJ
    deMonvel, JB
    Bohigas, O
    Martin, OC
    Percus, AG
    [J]. JOURNAL DE PHYSIQUE I, 1997, 7 (01): : 117 - 136
  • [6] Hierarchical Approach in Clustering to Euclidean Traveling Salesman Problem
    Fajar, Abdulah
    Herman, Nanna Suryana
    Abu, Nur Azman
    Shahib, Sahrin
    [J]. ADVANCED RESEARCH ON ELECTRONIC COMMERCE, WEB APPLICATION, AND COMMUNICATION, PT 1, 2011, 143 : 192 - +
  • [7] A Hybrid Heuristic Algorithm for the Euclidean Traveling Salesman Problem
    Singh, Dharm Raj
    Singh, Manoj Kumar
    Singh, Tarkeshwar
    [J]. 2015 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION & AUTOMATION (ICCCA), 2015, : 773 - 778
  • [8] A memetic neural network for the Euclidean traveling salesman problem
    Creput, Jean-Charles
    Koukam, Abderrafiaa
    [J]. NEUROCOMPUTING, 2009, 72 (4-6) : 1250 - 1264
  • [9] A new combined heuristic for the Euclidean traveling salesman problem
    Yang, Fei
    Lu, Yijiang
    [J]. Proceedings of the First International Conference on Information and Management Sciences, 2002, 1 : 102 - 105
  • [10] Hard to solve instances of the Euclidean Traveling Salesman Problem
    Stefan Hougardy
    Xianghui Zhong
    [J]. Mathematical Programming Computation, 2021, 13 : 51 - 74