Two Party Non-Local Games

被引:0
|
作者
Chakrabarty, I. [1 ,2 ]
Choudhury, B. S. [2 ]
机构
[1] Heritage Inst Technol, Kolkata 107, W Bengal, India
[2] Bengal Engn & Sci Univ, Howrah, W Bengal, India
关键词
Non-local games; Quantum strategy; Classical strategy;
D O I
10.1007/s10773-008-9748-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we have introduced two party games with respective winning conditions. One cannot win these games deterministically in the classical world if they are not allowed to communicate at any stage of the game. Interestingly we find out that in quantum world, these winning conditions can be achieved if the players share an entangled state. We also introduced a game which is impossible to win if the players are not allowed to communicate in classical world (both probabilistically and deterministically), yet there exists a perfect quantum strategy by following which, one can attain the winning condition of the game.
引用
收藏
页码:3144 / 3149
页数:6
相关论文
共 50 条
  • [1] Two Party Non-Local Games
    I. Chakrabarty
    B. S. Choudhury
    [J]. International Journal of Theoretical Physics, 2008, 47 : 3144 - 3149
  • [2] Perfect Strategies for Non-Local Games
    Lupini, M.
    Mancinska, L.
    Paulsen, V. I.
    Roberson, D. E.
    Scarpa, G.
    Severini, S.
    Todorov, I. G.
    Winter, A.
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2020, 23 (01)
  • [3] Perfect Strategies for Non-Local Games
    M. Lupini
    L. Mančinska
    V. I. Paulsen
    D. E. Roberson
    G. Scarpa
    S. Severini
    I. G. Todorov
    A. Winter
    [J]. Mathematical Physics, Analysis and Geometry, 2020, 23
  • [4] Synchronicity for quantum non-local games
    Brannan, Michael
    Harris, Samuel J.
    Todorov, Ivan G.
    Turowska, Lyudmila
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (02)
  • [5] Extended non-local games and monogamy-of-entanglement games
    Johnston, Nathaniel
    Mittal, Rajat
    Russo, Vincent
    Watrous, John
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2189):
  • [6] Worst Case Analysis of Non-local Games
    Ambainis, Andris
    Backurs, Arturs
    Balodis, Kaspars
    Skuskovniks, Agnis
    Smotrovs, Juris
    Virza, Madars
    [J]. SOFSEM 2013: Theory and Practice of Computer Science, 2013, 7741 : 121 - 132
  • [7] Quantum hypergraph homomorphisms and non-local games
    Hoefer, Gage
    Todorov, Ivan G.
    [J]. DISSERTATIONES MATHEMATICAE, 2023, 588 : 1 - 54
  • [8] Entanglement in Non-local Games and the Hyperlinear Profile of Groups
    William Slofstra
    Thomas Vidick
    [J]. Annales Henri Poincaré, 2018, 19 : 2979 - 3005
  • [9] Quantum No-signalling Correlations and Non-local Games
    Todorov, Ivan G.
    Turowska, Lyudmila
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (06)
  • [10] Entanglement in Non-local Games and the Hyperlinear Profile of Groups
    Slofstra, William
    Vidick, Thomas
    [J]. ANNALES HENRI POINCARE, 2018, 19 (10): : 2979 - 3005