Joint segmentation of images with non Gaussian mixture models

被引:0
|
作者
Derrode, Stephane [1 ,2 ]
Pieczynski, Wojciech [3 ]
机构
[1] Univ Marseille, Inst Fresnel, CNRS, UMR 6133, F-13451 Marseille 20, France
[2] Ecole Cent Marseille, F-13451 Marseille 20, France
[3] TELECOM SudParis, Inst Telecom, CITI Dept, CNRS,UMR 5157, F-91011 Evry, France
关键词
bayesian classification; probabilistic mixture model; copulas; image segmentation;
D O I
10.3166/TS.29.9-28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The idea behind the Pairvise Mixture Model is to classify, simultaneously two sets of observations by introducing a joint prior between the two corresponding classifications and some statistical relations between the two observations. We address both the Gaussian case and non-Gaussian parametric case built with copula-based parametric models and non-Gaussian margins. We also provide EM and ICE algorithms for automatic parameters estimation in order to make classification algorithms unsupervised. The model is illustrated through the segmentation of vectorial images (color and IRM). Results are compared to the segmentations obtained using independent mixture models on individual bands.
引用
收藏
页码:9 / 28
页数:20
相关论文
共 50 条
  • [1] Segmentation of SEM images of multiphase materials: When Gaussian mixture models are accurate?
    Chatzigeorgiou, Manolis
    Vrigkas, Michalis
    Beazi-Katsioti, Margarita
    Katsiotis, Marios
    Boukos, Nikos
    Constantoudis, Vassilios
    [J]. JOURNAL OF MICROSCOPY, 2023, 289 (01) : 58 - 70
  • [2] Improved Gaussian Mixture Models for Adaptive Foreground Segmentation
    Nikolaos Katsarakis
    Aristodemos Pnevmatikakis
    Zheng-Hua Tan
    Ramjee Prasad
    [J]. Wireless Personal Communications, 2016, 87 : 629 - 643
  • [3] Fast estimation of Gaussian mixture models for image segmentation
    Nicola Greggio
    Alexandre Bernardino
    Cecilia Laschi
    Paolo Dario
    José Santos-Victor
    [J]. Machine Vision and Applications, 2012, 23 : 773 - 789
  • [4] Improved Gaussian Mixture Models for Adaptive Foreground Segmentation
    Katsarakis, Nikolaos
    Pnevmatikakis, Aristodemos
    Tan, Zheng-Hua
    Prasad, Ramjee
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2016, 87 (03) : 629 - 643
  • [5] Video modelling and segmentation using Gaussian mixture models
    Mo, XR
    Wilson, R
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 854 - 857
  • [6] Fast estimation of Gaussian mixture models for image segmentation
    Greggio, Nicola
    Bernardino, Alexandre
    Laschi, Cecilia
    Dario, Paolo
    Santos-Victor, Jose
    [J]. MACHINE VISION AND APPLICATIONS, 2012, 23 (04) : 773 - 789
  • [7] Spatial color image segmentation based on finite non-Gaussian mixture models
    Sefidpour, Ali
    Bouguila, Nizar
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) : 8993 - 9001
  • [8] Classification of facial images using Gaussian mixture models
    Liao, P
    Gao, W
    Shen, L
    Chen, XL
    Shan, SG
    Zeng, WB
    [J]. ADVANCES IN MUTLIMEDIA INFORMATION PROCESSING - PCM 2001, PROCEEDINGS, 2001, 2195 : 724 - 731
  • [9] Video segmentation and compression using hierarchies of Gaussian mixture models
    Yazbek, George
    Mokbel, Chafic
    Chollet, Gerard
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PTS 1-3, PROCEEDINGS, 2007, : 1009 - +
  • [10] Image segmentation using spectral clustering of Gaussian mixture models
    Zeng, Shan
    Huang, Rui
    Kang, Zhen
    Sang, Nong
    [J]. NEUROCOMPUTING, 2014, 144 : 346 - 356