GLOBAL EXISTENCE AND NONEXISTENCE FOR THE VISCOELASTIC WAVE EQUATION WITH NONLINEAR BOUNDARY DAMPING-SOURCE INTERACTION

被引:13
|
作者
Said-Houari, Belkacem [1 ]
Falcao Nascimento, Flavio A. [2 ]
机构
[1] KAUST, Div Math & Comp Sci & Engn, Thuwal, Saudi Arabia
[2] State Univ Ceara FAFIDAM, Dept Math, BR-62930000 Limoeiro Do N, CE, Brazil
关键词
Viscoelastic wave equation; boundary feedback; source term; relaxation function; POTENTIAL WELL THEORY; BLOW-UP; EVOLUTION-EQUATIONS; DECAY;
D O I
10.3934/cpaa.2013.12.375
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this work is to study a model of the viscoelastic wave equation with nonlinear boundary/interior sources and a nonlinear interior damping. First, applying the Faedo-Galerkin approximations combined with the compactness method to obtain existence of regular global solutions to an auxiliary problem with globally Lipschitz source terms and with initial data in the potential well. It is important to emphasize that it is not possible to consider density arguments to pass from regular to weak solutions if one considers regular solutions of our problem where the source terms are locally Lipschitz functions. To overcome this difficulty, we use an approximation method involving truncated sources and adapting the ideas in [13] to show that the existence of weak solutions can still be obtained for our problem. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term, then the solution ceases to exist and blows up in finite time provided that the initial data are large enough.
引用
收藏
页码:375 / 403
页数:29
相关论文
共 50 条