An Efficient Method for Computing Single-Parameter Partial Expected Value of Perfect Information

被引:46
|
作者
Strong, Mark [1 ]
Oakley, Jeremy E. [2 ]
机构
[1] Univ Sheffield, Sch Hlth & Related Res ScHARR, Sheffield, S Yorkshire, England
[2] Univ Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, England
基金
英国医学研究理事会;
关键词
expected value of perfect information; economic evaluation model; Monte Carlo methods; Bayesian decision theory; computational methods; correlation; SENSITIVITY-ANALYSIS; MODELS;
D O I
10.1177/0272989X12465123
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The value of learning an uncertain input in a decision model can be quantified by its partial expected value of perfect information (EVPI). This is commonly estimated via a 2-level nested Monte Carlo procedure in which the parameter of interest is sampled in an outer loop, and then conditional on this sampled value, the remaining parameters are sampled in an inner loop. This 2-level method can be difficult to implement if the joint distribution of the inner-loop parameters conditional on the parameter of interest is not easy to sample from. We present a simple alternative 1-level method for calculating partial EVPI for a single parameter that avoids the need to sample directly from the potentially problematic conditional distributions. We derive the sampling distribution of our estimator and show in a case study that it is both statistically and computationally more efficient than the 2-level method.
引用
收藏
页码:755 / 766
页数:12
相关论文
共 50 条
  • [1] Need for Speed: An Efficient Algorithm for Calculation of Single-Parameter Expected Value of Partial Perfect Information
    Sadatsafavi, Mohsen
    Bansback, Nick
    Zafari, Zafar
    Najafzadeh, Mehdi
    Marra, Carlo
    [J]. VALUE IN HEALTH, 2013, 16 (02) : 438 - 448
  • [2] Strategies for Efficient Computation of the Expected Value of Partial Perfect Information
    Madan, Jason
    Ades, Anthony E.
    Price, Malcolm
    Maitland, Kathryn
    Jemutai, Julie
    Revill, Paul
    Welton, Nicky J.
    [J]. MEDICAL DECISION MAKING, 2014, 34 (03) : 327 - 342
  • [3] SINGLE-PARAMETER INFERENCE BASED ON PARTIAL PRIOR INFORMATION
    LAMBERT, D
    DUNCAN, GT
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1986, 14 (04): : 297 - 305
  • [4] Estimating the expected value of partial perfect information: a review of methods
    Coyle, Doug
    Oakley, Jeremy
    [J]. EUROPEAN JOURNAL OF HEALTH ECONOMICS, 2008, 9 (03): : 251 - 259
  • [5] Estimating the expected value of partial perfect information: a review of methods
    Doug Coyle
    Jeremy Oakley
    [J]. The European Journal of Health Economics, 2008, 9 : 251 - 259
  • [6] Expected Value of Partial Perfect Information in Hybrid Models Using Dynamic Discretization
    Yet, Barbaros
    Constantinou, Anthony
    Fenton, Norman
    Neil, Martin
    [J]. IEEE ACCESS, 2018, 6 : 7802 - 7817
  • [7] An Efficient Method for Computing Expected Value of Sample Information for Survival Data from an Ongoing Trial
    Vervaart, Mathyn
    Strong, Mark
    Claxton, Karl P.
    Welton, Nicky J.
    Wisloff, Torbjorn
    Aas, Eline
    [J]. MEDICAL DECISION MAKING, 2022, 42 (05) : 612 - 625
  • [8] THE EXPECTED VALUE OF PERFECT INFORMATION IN FACILITY LOCATION
    DREZNER, Z
    WESOLOWSKY, GO
    [J]. OPERATIONS RESEARCH, 1980, 28 (02) : 395 - 402
  • [9] An empirical evaluation of the expected value of perfect information
    Lundy, J
    Davies, GM
    Cook, JR
    [J]. VALUE IN HEALTH, 2006, 9 (03) : A131 - A132
  • [10] Sensitivity analysis and the expected value of perfect information
    Felli, JC
    Hazen, GB
    [J]. MEDICAL DECISION MAKING, 1998, 18 (01) : 95 - 109