Aluminum particle combustion in turbulent flames

被引:53
|
作者
Corcoran, Amy L. [1 ]
Hoffmann, Vern K. [1 ]
Dreizin, Edward L. [1 ]
机构
[1] New Jersey Inst Technol, Newark, NJ 07102 USA
关键词
Metal combustion; Particle burn rate; Turbulence intensity; THERMAL-EXPLOSION; DETONATION; TITANIUM; MODEL;
D O I
10.1016/j.combustflame.2012.11.008
中图分类号
O414.1 [热力学];
学科分类号
摘要
Predictive mechanisms for particle ignition and combustion rates are required in order to develop optimized propellant and energetic formulations using micron-sized metal powders, such as aluminum. Most current descriptions are based on laboratory experiments performed in stationary or laminar combustion configurations. However, turbulent environments exist in most applications and validity of the present descriptions for such environments has not been established. This experimental study is aimed to measure burn times for aluminum particles burning in environments with different levels of turbulence. A laminar air-acetylene flame is produced, and auxiliary tangential jets of air with adjustable flow rates are used to achieve different controlled levels of turbulence. Fine spherical aluminum powder is injected in the flame axially using a flow of nitrogen. The streaks of burning particles are photographed using a camera placed behind a mechanical chopper interrupting the photo-exposure with a pre-set frequency. The obtained dashed streaks are used to measure the particle burn times for different flow conditions. The particle burn times are correlated with the particle size distribution to obtain the burn time as a function of the particle size. The results are processed to obtain a correction for the Al particle burn rate as a function of the turbulence intensity, I. The measured burn times are longer than predicted for the micron-sized Al particles using a correlation based on survey of earlier experiments, mostly with coarser Al powders. Increased turbulence intensity results in substantial reduction of the particle burn time. Present data suggest that the burn rate for particle combustion in a laminar environment should be multiplied by 1 + 18.2I, to estimate the acceleration of aluminum combustion in turbulent environments. (C) 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:718 / 724
页数:7
相关论文
共 50 条
  • [1] Detailed modeling of aluminum particle combustion——From single particles to cloud combustion in Bunsen flames
    Jiarui ZHANG
    Oliver T.STEIN
    Tien D.LUU
    Ali SHAMOONI
    Zhixun XIA
    Zhenbing LUO
    Likun MA
    Yunchao FENG
    Andreas KRONENBURG
    [J]. Chinese Journal of Aeronautics, 2022, 35 (05) : 319 - 332
  • [2] Detailed modeling of aluminum particle combustion——From single particles to cloud combustion in Bunsen flames
    Jiarui ZHANG
    Oliver TSTEIN
    Tien DLUU
    Ali SHAMOONI
    Zhixun XIA
    Zhenbing LUO
    Likun MA
    Yunchao FENG
    Andreas KRONENBURG
    [J]. Chinese Journal of Aeronautics . , 2022, (05) - 332
  • [3] Detailed modeling of aluminum particle combustion - From single particles to cloud combustion in Bunsen flames
    Zhang, Jiarui
    Stein, Oliver T.
    Luu, Tien D.
    Shamooni, Ali
    Xia, Zhixun
    Luo, Zhenbing
    Ma, Likun
    Feng, Yunchao
    Kronenburg, Andreas
    [J]. CHINESE JOURNAL OF AERONAUTICS, 2022, 35 (05) : 319 - 332
  • [4] COMBUSTION ROAR OF TURBULENT DIFFUSION FLAMES
    GIAMMAR, RD
    PUTNAM, AA
    [J]. MECHANICAL ENGINEERING, 1970, 92 (02) : 66 - &
  • [5] Combustion dynamics of turbulent swirling flames
    Külsheimer, C
    Büchner, H
    [J]. COMBUSTION AND FLAME, 2002, 131 (1-2) : 70 - 84
  • [6] COMBUSTION ROAR OF TURBULENT DIFFUSION FLAMES
    GIAMMAR, RD
    PUTNAM, AA
    [J]. JOURNAL OF ENGINEERING FOR POWER, 1970, 92 (02): : 157 - &
  • [7] COMBUSTION ROAR OF TURBULENT DIFFUSION FLAMES
    GIAMMAR, RD
    PUTNAM, AA
    [J]. COMBUSTION, 1970, 41 (09): : 39 - &
  • [8] Combustion characteristics of aluminum particle jet flames in a hot co-flow
    Zhang, Jiarui
    Xia, Zhixun
    Stein, Oliver T.
    Ma, Likun
    Li, Fei
    Feng, Yunchao
    Zhang, Zihao
    Kronenburg, Andreas
    [J]. CHEMICAL ENGINEERING JOURNAL, 2022, 442
  • [9] PRELIMINARY STUDIES OF HIGH-SPEED PHOTOGRAPHY OF ALUMINUM PARTICLE COMBUSTION IN FLAMES
    PRENTICE, JL
    DREW, CM
    CHRISTEN.HC
    [J]. PYRODYNAMIC, 1965, 3 (1-2): : 81 - &
  • [10] Combustion characteristics of aluminum particle jet flames in a hot co-flow
    Zhang, Jiarui
    Xia, Zhixun
    Stein, Oliver T.
    Ma, Likun
    Li, Fei
    Feng, Yunchao
    Zhang, Zihao
    Kronenburg, Andreas
    [J]. Chemical Engineering Journal, 2022, 442