Robust Estimation of Kinetic Parameters in Dynamic PET Imaging

被引:0
|
作者
Gao, Fei [1 ]
Liu, Huafeng [1 ]
Shi, Pengcheng [1 ]
机构
[1] Rochester Inst Technol, Golisano Coll Comp & Informat Sci, Rochester, NY 14623 USA
关键词
DIRECT RECONSTRUCTION; IMAGES; MAPS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dynamic PET imaging provides important information for biological research, clinical diagnosis and pharmacokinetic analysis through kinetic modeling and data-driven parameter estimation. Kinetic parameters quantitatively describe dynamic material exchange and metabolism of radiotracers in plasma and tissues. While many efforts have been devoted to estimate kinetic parameters from dynamic PET, the poor statistical properties of the measurement data in low count dynamic acquisition and the uncertainties in estimating the arterial input function have limited the accuracy and reliability of the kinetic parameter estimation. Additionally, the quantitative analysis of individual kinetic parameters is not yet implemented. In this paper, we present a robust kinetic parameter estimation framework which is robust to both the poor statistical properties of measurement data in dynamic PET and the uncertainties in estimated arterial input function, and is able to analyze every single kinetic parameter quantitatively. The strategy is optimized with robust H-infinity estimation under minimax criterion. Experiments are conducted on Monte Carlo sirnulated data set for quantitative analysis and validation, and on real patient scans for assessment of clinical potential.
引用
收藏
页码:492 / 499
页数:8
相关论文
共 50 条
  • [1] Fast and robust estimation of kinetic parameters in dynamic PET imaging using neural network-based discretization method
    Shao, Wenrui
    Chen, Yixin
    Li, Nan
    Yang, Zhi
    Meng, Xiangxi
    Xie, Zhaoheng
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2023, 64
  • [2] CONSTRAINED MIXTURE MODELING FOR THE ESTIMATION OF KINETIC PARAMETERS IN DYNAMIC PET
    Lin, Yanguang
    Li, Quanzheng
    Haldar, Justin P.
    Leahy, Richard M.
    [J]. 2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 1004 - 1007
  • [3] Estimation of kinetic parameters in graphical analysis of PET imaging data
    Ogden, RT
    [J]. STATISTICS IN MEDICINE, 2003, 22 (22) : 3557 - 3568
  • [4] Estimation of kinetic parameters in dynamic FDG PET imaging based on shortened protocols: a virtual clinical study
    Reshtebar, Niloufar
    Hosseini, Seyed Abolfazl
    Zhuang, Mingzan
    Sheikhzadeh, Peyman
    [J]. PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2024, 47 (01) : 199 - 213
  • [5] Estimation of kinetic parameters in dynamic FDG PET imaging based on shortened protocols: a virtual clinical study
    Niloufar Reshtebar
    Seyed Abolfazl Hosseini
    Mingzan Zhuang
    Peyman Sheikhzadeh
    [J]. Physical and Engineering Sciences in Medicine, 2024, 47 : 199 - 213
  • [6] Sparsity Constrained Mixture Modeling for the Estimation of Kinetic Parameters in Dynamic PET
    Lin, Yanguang
    Haldar, Justin P.
    Li, Quanzheng
    Conti, Peter S.
    Leahy, Richard M.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (01) : 173 - 185
  • [7] Joint Estimation of Subject Motion and Tracer Kinetic Parameters of Dynamic PET Data in an EM Framework
    Jiao, Jieqing
    Salinas, Cristian A.
    Searle, Graham E.
    Gunn, Roger N.
    Schnabel, Julia A.
    [J]. MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
  • [8] Robust Nonlinear Regression in Enzyme Kinetic Parameters Estimation
    Marasovic, Maja
    Marasovic, Tea
    Milos, Mladen
    [J]. JOURNAL OF CHEMISTRY, 2017, 2017
  • [9] Direct Estimation of Kinetic Parametric Images for Dynamic PET
    Wang, Guobao
    Qi, Jinyi
    [J]. THERANOSTICS, 2013, 3 (10): : 802 - 815
  • [10] Dynamic PET Data Generation and Analysis Software Tool for Evaluating the SNR Dependence on Kinetic Parameters Estimation
    Santarelli, Maria Filomena
    Positano, Vincenzo
    Landini, Luigi
    [J]. 6TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, 2015, 45 : 204 - 207