BOUNDEDNESS AND COMPACTNESS OF THE HARDY TYPE OPERATOR WITH VARIABLE UPPER LIMIT IN WEIGHTED LEBESGUE SPACES

被引:1
|
作者
Abylayeva, Akbota Muhamediyarovna [1 ]
机构
[1] LN Gumilyov Eurasian Natl Univ, Saipayev Str 2, Astana 010008, Kazakhstan
来源
关键词
Inequalities; Hardy type inequalities; fractional integration operator; weighted estimate; boundedness; compactness;
D O I
10.7153/mia-2020-23-66
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 0 < alpha < 1. The operator of the form K(alpha,phi)f(x) = integral(phi(x))(a) f(t)w(t)dt/(W(x) - W(t))((1-alpha)), x > 0, is considered, where the real weight functions v(x) and w(x) are locally integrable on I := (a, b), 0 <= a < b <= infinity and dW(x)/dx equivalent to w(x). In this paper we derive criteria for the operator K-alpha,K-phi, 0< alpha < 1, 0 < p; q < infinity, p > 1/alpha to be bounded and compact from the spaces L-p,L- w to the spaces L-q,L- v.
引用
收藏
页码:805 / 819
页数:15
相关论文
共 50 条