Numerical Study of Supercritical CO2 Convective Heat Transfer in Advanced Brayton Cycles for Concentrated Solar Power

被引:0
|
作者
Flueckiger, Scott M. [1 ]
Garimella, Suresh V. [1 ]
Groll, Eckhard A. [1 ]
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
关键词
supercritical carbon dioxide; convective heat transfer; concentrated solar power; Brayton cycle; CARBON-DIOXIDE;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Advancement of supercritical carbon dioxide Brayton cycle technology in concentrated solar power plants requires an improved understanding of duct-flow convection in the supercritical region. Numerical simulation, based on a modified carbon dioxide hot gas bypass load stand with an external heat source, is conducted to determine carbon dioxide convective heat transfer coefficients at supercritical pressures and temperatures beyond the range for which results are available in the literature. The simulation geometry is derived from the heated test section included in the physical load stand. Inlet pressure, temperature, and mass flux are varied to assess the influence on Nusselt number. Cases that achieve fully developed flow and temperature conditions inside the tube geometry agree with predictions from a Nusselt number correlation in the literature with a mean absolute error of 6.4 percent, less than the 6.8% average error reported for the correlation. This agreement includes pressure and temperature conditions outside the defined range of the correlation. Future experiments will provide additional validation of the model and correlation, enabling analysis farther into the supercritical region necessary for Brayton cycle operation.
引用
收藏
页码:535 / 541
页数:7
相关论文
共 50 条
  • [1] DYNAMIC MODEL OF SUPERCRITICAL CO2 BRAYTON CYCLES DRIVEN BY CONCENTRATED SOLAR POWER
    Couso, Gregory Berthet
    Vicencio, Rodrigo Barraza
    Padilla, Richardo Vasquez
    Too, Yen Chean Soo
    Pye, John
    [J]. PROCEEDINGS OF THE ASME 11TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2017, 2017,
  • [2] Supercritical CO2 Mixtures for Advanced Brayton Power Cycles in Line-Focusing Solar Power Plants
    Valencia-Chapi, Robert
    Coco-Enriquez, Luis
    Munoz-Anton, Javier
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [3] Supercritical CO2 Mixtures for Brayton Power Cycles Complex Configurations with Concentrating Solar Power
    Valencia-Chapi, Robert
    Tafur-Escanta, Paul
    Coco-Enriquez, Luis
    Munoz-Anton, Javier
    [J]. SOLARPACES 2020 - 26TH INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS, 2022, 2445
  • [4] Performance Investigation of Supercritical CO2 Brayton Cycles in Combination With Solar Power and Waste Heat Recovery Systems
    Alshahrani, Saad
    Vesely, Ladislav
    Kapat, Jayanta
    Saleel, C. Ahamed
    Engeda, Abraham
    [J]. JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (06):
  • [5] Numerical study of convective heat transfer to supercritical CO2 in vertical heated tubes
    Yan, Chenshuai
    Xu, Jinliang
    Wang, Shuxiang
    Liu, Guanglin
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 137
  • [6] Viability Assessment of a Concentrated Solar Power Tower With a Supercritical CO2 Brayton Cycle Power Plant
    Alsagri, Ali Sulaiman
    Chiasson, Andrew
    Gadalla, Mohamed
    [J]. JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2019, 141 (05):
  • [7] Supercritical CO2 Heat Pumps and Power Cycles for Concentrating Solar Power
    McTigue, Joshua D.
    Farres-Antunez, Pau
    Neises, Ty
    White, Alexander
    [J]. SOLARPACES 2020 - 26TH INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS, 2022, 2445
  • [8] Supercritical CO2 Brayton cycles for solar-thermal energy
    Iverson, Brian D.
    Conboy, Thomas M.
    Pasch, James J.
    Kruizenga, Alan M.
    [J]. APPLIED ENERGY, 2013, 111 : 957 - 970
  • [9] Numerical study on convective heat transfer of supercritical CO2 in vertically upward and downward tubes
    Yan ChenShuai
    Xu JinLiang
    Zhu BingGuo
    He XiaoTian
    Liu GuangLin
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (05) : 995 - 1006
  • [10] Numerical study on convective heat transfer of supercritical CO2 in vertically upward and downward tubes
    YAN ChenShuai
    XU JinLiang
    ZHU BingGuo
    HE XiaoTian
    LIU GuangLin
    [J]. Science China Technological Sciences, 2021, 64 (05) : 995 - 1006