Rule-based Test Input Generation From Bytecode

被引:2
|
作者
Xu, Weifeng [1 ]
Ding, Tao [2 ]
Xu, Dianxiang [3 ]
机构
[1] Gannon Univ, Dept Comp & Info Sci, Erie, PA 16541 USA
[2] Univ Maryland Baltimore Cty, Dept Informat Syst, Baltimore, MD 21250 USA
[3] Boise State Univ, Dept Comp Sci, Boise, ID 83725 USA
关键词
Software testing; search-based testing; test input generation; fitness function; bytecode;
D O I
10.1109/SERE.2014.24
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Search-based test generators, such as those using genetic algorithms and alternative variable methods, can automatically generate test inputs. They typically rely on fitness functions to calculate fitness scores for guiding the search process. This paper presents a novel rule-based testing (RBT) approach to automated generation of test inputs from Java bytecode without using fitness functions. It extracts tagged paths from the control flow graph of given bytecode, analyzes and monitors the predicates in the tagged paths at runtime, and generates test inputs using predefined rules. Our case studies show that RBT has outperformed the test input generators using genetic algorithms and alternative variable methods.
引用
收藏
页码:108 / 117
页数:10
相关论文
共 50 条
  • [1] Constraint-based test input generation for Java bytecode
    Université de Rennes 1, Rennes, France
    不详
    Proc. Int. Symp. Softw. Reliab. Eng., 1600, (131-140):
  • [2] Rule-based Test Generation with Mind Maps
    Polivaev, Dimitry
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (80): : 103 - 114
  • [3] Optimal Test Design With Rule-Based Item Generation
    Geerlings, Hanneke
    van der Linden, Wim J.
    Glas, Cees A. W.
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2013, 37 (02) : 140 - 161
  • [4] Modeling Rule-Based Item Generation
    Hanneke Geerlings
    Cees A. W. Glas
    Wim J. van der Linden
    Psychometrika, 2011, 76
  • [5] Modeling Rule-Based Item Generation
    Geerlings, Hanneke
    Glas, Cees A. W.
    van der Linden, Wim J.
    PSYCHOMETRIKA, 2011, 76 (02) : 337 - 359
  • [6] Input selection in fuzzy rule-based classification systems
    Nakashima, T
    Morisawa, T
    Ishibuchi, H
    PROCEEDINGS OF THE SIXTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS I - III, 1997, : 1457 - 1462
  • [7] Counterfactual rule generation for fuzzy rule-based classification systems
    Zhang, Te
    Wagner, Christian
    Garibaldi, Jonathan. M.
    2022 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2022,
  • [8] Rule-based generation of requirements traceability relations
    Spanoudakis, G
    Zisman, A
    Pérez-Miñana, E
    Krause, P
    JOURNAL OF SYSTEMS AND SOFTWARE, 2004, 72 (02) : 105 - 127
  • [9] A Partially Rule-Based Approach to AMR Generation
    Manning, Emma
    NAACL HLT 2019: THE 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES: PROCEEDINGS OF THE STUDENT RESEARCH WORKSHOP, 2019, : 61 - 70
  • [10] Rule-based generation of HVAC duct routing
    Chen, Zhisen
    Guan, Hang
    Yuan, Xiaolei
    Xie, Tian
    Xu, Peng
    AUTOMATION IN CONSTRUCTION, 2022, 139