One of the major disadvantages in ultra-high-performance-fiber reinforced concrete (UHP-FRC) is its high ordinary Portland cement (OPC) content, which directly translates into an increase in OPC production. More OPC production results in increased emission of greenhouse gases, as well increased electrical energy consumption and concrete price. This study is aimed at adjusting the binder content (OPC and silica fume (SF) contents) of UHP-FRC using the response surface method. The present investigation shows that, for a given water/binder and superplasticizer/OPC, the compressive strength is independent of the binder content, whereas the flow depends on the binder content. Increasing the binder content does not enhance the strength compared with the required design strength because the capillary porosity increases with increasing OPC content; however, the workability increases. The final result is the production of a UHP-FRC with an OPC content of 720.49 kg/m(3), an SF content of 214.25 kg/m(3), a compressive strength of 181.41 MPa, a direct tensile strength of 12.49 MPa, a bending tensile strength of 30.31 MPa, and a flow of 167 mm. (C) 2013 Elsevier Ltd. All rights reserved.