Fractional modelling and identification of a thermal process

被引:9
|
作者
Benchellal, Amel [1 ]
Poinot, Thierry [1 ]
Trigeassou, Jean-Claude [1 ]
机构
[1] Univ Poitiers, Lab Automat & Informat Ind, F-86022 Poitiers, France
关键词
fractional systems; non-integer systems; fractional operator; modelling; estimation; output-error identification; heat transfer; diffusive interfaces;
D O I
10.1177/1077546307087441
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Heat transfer problems are subject to diffusion phenomenon, and can be modelled with the help of fractional systems. The simulation of these particular systems is based on a fractional integrator, where the non-integer behaviour occurs only within a limited spectral band. A first model, based on the use of one fractional integrator, has been already defined and tested on a thermal pilot. Starting from frequency considerations derived from the analysis of a diffusion problem, a more general approximation of the fractional system is proposed here. The new model is based on the use of two fractional integrator operators. This makes it possible to define a state-space model for simulation of transients, and to use an output-error technique in order to estimate the parameters of the model. Experimental results obtained for a thermal process illustrate the improvements obtained using the proposed model.
引用
收藏
页码:1403 / 1414
页数:12
相关论文
共 50 条
  • [1] Fractional modelling and identification of thermal systems
    Gabano, J. -D.
    Poinot, T.
    [J]. SIGNAL PROCESSING, 2011, 91 (03) : 531 - 541
  • [2] The application of fractional-order models for thermal process modelling inside buildings
    Dlugosz, Marek
    Skruch, Pawel
    [J]. JOURNAL OF BUILDING PHYSICS, 2016, 39 (05) : 440 - 451
  • [3] Identification of a thermal system using continuous linear parameter-varying fractional modelling
    Gabano, J. -D.
    Poinot, T.
    Kanoun, H.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (07): : 889 - 899
  • [4] Modelling and parameter identification for a two-stage fractional dynamical system in microbial batch process
    Liu, Chongyang
    Yi, Xiaopeng
    Feng, Yanli
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2022, 27 (02): : 350 - 367
  • [5] Estimation of thermal parameters using fractional modelling
    Gabano, J. D.
    Poinot, T.
    [J]. SIGNAL PROCESSING, 2011, 91 (04) : 938 - 948
  • [6] Modelling and identification of diffusive systems using fractional models
    Benchellal, Amel
    Poinot, Thierry
    Trigeassou, Jean-Claude
    [J]. ADVANCES IN FRACTIONAL CALCULUS: THEORETICAL DEVELOPMENTS AND APPLICATIONS IN PHYSICS AND ENGINEERING, 2007, : 213 - +
  • [7] Modelling and identification of an air cooling process
    Spannar, J
    Sohlberg, B
    [J]. PROCEEDINGS OF THE 1997 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 1997, : 383 - 385
  • [8] Modelling of the Heating Process in a Thermal Screw
    Zhang, Xuan
    Veje, Christian T.
    Lassen, Benny
    Willatzen, Morten
    [J]. 6TH EUROPEAN THERMAL SCIENCES CONFERENCE (EUROTHERM 2012), 2012, 395
  • [9] Thermal Modelling of the Ladle Preheating Process
    Glaser, Bjorn
    Gornerup, Marten
    Du Sichen
    [J]. STEEL RESEARCH INTERNATIONAL, 2011, 82 (12) : 1425 - 1434
  • [10] FRACTIONAL-ORDER MODELLING AND PARAMETER IDENTIFICATION OF ELECTRICAL COILS
    Abuaisha, Tareq
    Kertzscher, Jana
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (01) : 193 - 216