On QF rings and artinian principal ideal rings

被引:0
|
作者
Alvarado-Garcia, Alejandro [1 ]
Cejudo-Castilla, Cesar [2 ]
Alberto Rincon-Mejia, Hugo [1 ]
Fernando Vilchis-Montalvo, Ivan [2 ]
Gerardo Zorrilla-Noriega, Manuel [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, CU, Mexico City 04510, DF, Mexico
[2] Benemerita Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Ave San Claudio & 18 Sur,Ciudad Univ, Puebla 72570, Mexico
来源
关键词
left artinian ring; artinian principal ideal ring; conoetherian ring; coartinian ring; QF ring; perfect ring; semiartinian ring;
D O I
10.15672/HJMS.2017.516
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we give sufficient conditions for a ring R to be quasi-Frobenius, such as R being left artinian and the class of injective cogenerators of R-Mod being closed under projective covers. We prove that R is a division ring if and only if R is a domain and the class of left free R-modules is closed under injective hulls. We obtain some characterizations of artinian principal ideal rings. We characterize the rings for which left cyclic modules coincide with left cocyclic R-modules. Finally, we obtain characterizations of left artinian and left coartinian rings.
引用
收藏
页码:67 / 74
页数:8
相关论文
共 50 条