Microbial activities during composting of spent pig-manure sawdust litter at different moisture contents

被引:206
|
作者
Tiquia, SM
Tam, NFY
Hodgkiss, IJ
机构
[1] CITY UNIV HONG KONG, DEPT BIOL & CHEM, KOWLOON, HONG KONG
[2] UNIV HONG KONG, DEPT ECOL & BIODIVERS, HONG KONG, HONG KONG
关键词
composting; spent pig-manure sawdust litter; microbial activity; microbial biomass; temperature; moisture;
D O I
10.1016/0960-8524(95)00195-6
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The changes in microbial properties, including total aerobic heterotrophs, O-2-consumption rate, ATP content, dehydrogenase activity and microbial biomass C and N of the spent pig-manure sawdust litter were examined during further composting. The effects of three moisture levels, 50% (pile A), 60% (pile B) and 70% (pile C), on the composting process were also evaluated. Piles A and B had very similar trends of change in temperature and microbial properties during the composting period but pile C was significantly different. Temperatures in the first two piles increased to a peak of 64-69 degrees C by day 4, while that of pile C rose to a lower peak (58 degrees C) on day 7. The high moisture content (about 70%) of pile C led to early cooling of the pile and decreased the production of microbial activity and biomass. Although water was added frequently to maintain the moisture content of each pile, it was difficult in practice to maintain the moisture content of pile C at 70%, since water leaked out from the pile. Therefore, a moisture content of between 50 and 60% can be considered as the optimal moisture level for further composting of the spent litter In general, the total aerobic heterotrophs, O-2 consumption rate and ATP content of all piles increased dramatically during the thermophilic stage of composting, but then decreased slowly and were maintained at lower levels at the end of the composting process. Stability of microbial properties was observed at day 60, indicating that two months is enough to convert spent litter to a mature compost. Temperature was found to be correlated with ATP content, dehydrogenase activity and oxygen consumption rate, and so these parameters could be used to indicate microbial activity and degradation of the spent pig-manure sawdust litter. (C) 1996 Elsevier Science Ltd.
引用
下载
收藏
页码:201 / 206
页数:6
相关论文
共 50 条
  • [1] Effects of composting on phytotoxicity of spent pig-manure sawdust litter
    Tiquia, SM
    Tam, NFY
    Hodgkiss, IJ
    ENVIRONMENTAL POLLUTION, 1996, 93 (03) : 249 - 256
  • [2] Effects of turning frequency on composting of spent pig-manure sawdust litter
    Tiquia, SM
    Tam, NFY
    Hodgkiss, IJ
    BIORESOURCE TECHNOLOGY, 1997, 62 (1-2) : 37 - 42
  • [3] Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge
    Tiquia, SM
    Tam, NFY
    BIORESOURCE TECHNOLOGY, 1998, 65 (1-2) : 43 - 49
  • [4] Changes in chemical properties during composting of spent pig litter at different moisture contents
    Tiquia, SM
    Tam, NFY
    Hodgkiss, IJ
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 1998, 67 (01) : 79 - 89
  • [5] Nitrogen transformation during co-composting of spent pig manure, sawdust litter and sludge under forced-aerated system
    Tam, NFY
    Tiquia, SM
    ENVIRONMENTAL TECHNOLOGY, 1999, 20 (03) : 259 - 267
  • [6] Salmonella elimination during composting of spent pig litter
    Tiquia, SM
    Tam, NFY
    Hodgkiss, IJ
    BIORESOURCE TECHNOLOGY, 1998, 63 (02) : 193 - 196
  • [7] Composting of spent pig litter at different seasonal temperatures in subtropical climate
    Tiquia, SM
    Tam, NFY
    Hodgkiss, IJ
    ENVIRONMENTAL POLLUTION, 1997, 98 (01) : 97 - 104
  • [9] Biodegradability and microbial activities during composting of poultry litter
    Atkinson, CF
    Jones, DD
    Gauthier, JJ
    POULTRY SCIENCE, 1996, 75 (05) : 608 - 617
  • [10] Degradation of tetracycline and sulfadiazine during continuous thermophilic composting of pig manure and sawdust
    Selvam, Ammaiyappan
    Zhao, Zhenyong
    Li, Yunchun
    Chen, Yumei
    Leung, Kelvin S. -Y.
    Wong, Jonathan W. -C.
    ENVIRONMENTAL TECHNOLOGY, 2013, 34 (16) : 2433 - 2441