Numerical modeling of nonlinear graphene-based devices at terahertz frequencies

被引:2
|
作者
Makeeva, Galina [1 ]
Golovanov, Oleg [1 ]
Rinkevich, Anatoly [2 ]
机构
[1] Penza State Univ, Penza, Russia
[2] Russian Acad Sci, Inst Met Phys, Ural Brach, 18 S Kovalevskaya St, Ekaterinburg 620041, Russia
基金
俄罗斯科学基金会;
关键词
Nonlinear; parametric; graphene-based devices; nanostructure; bias electric field; numerical approach; projection method;
D O I
10.3233/JAE-171074
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Rigorous mathematical models of nonlinear terahertz (THz) graphene-based devices are developed by solving nonlinear Maxwell's equations with boundary conditions simultaneously with a model of graphene surface conductivity as a nonlinear function on the time-varying electric field. The numerical approach is based on the projection method. Nonlinear phenomena, related to the parametric instability due excitations by the incident pumping TEM-wave in the multilayer graphene-dielectric nanostructures, are investigated numerically at THz frequencies.
引用
收藏
页码:129 / 136
页数:8
相关论文
共 50 条
  • [1] Terahertz Properties of Graphene and Graphene-Based Terahertz Devices
    Zhou Yixuan
    Huang Yuanyuan
    Jin Yanping
    Yao Zehan
    He Chuan
    Xu Xinlong
    [J]. CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (06):
  • [2] Terahertz Properties of Graphene and Graphene-Based Terahertz Devices
    Zhou, Yixuan
    Huang, Yuanyuan
    Jin, Yanping
    Yao, Zehan
    He, Chuan
    Xu, Xinlong
    [J]. Zhongguo Jiguang/Chinese Journal of Lasers, 2019, 46 (06):
  • [3] Graphene-based Hyperbolic Metamaterial at Terahertz Frequencies
    Othman, Mohamed A. K.
    Guclu, Caner
    Capolino, Filippo
    [J]. 2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [4] Graphene-based devices in terahertz science and technology
    Otsuji, T.
    Tombet, S. A. Boubanga
    Satou, A.
    Fukidome, H.
    Suemitsu, M.
    Sano, E.
    Popov, V.
    Ryzhii, M.
    Ryzhii, V.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (30)
  • [5] Modeling graphene-based nanoelectromechanical devices
    Poetschke, M.
    Rocha, C. G.
    Torres, L. E. F. Foa
    Roche, S.
    Cuniberti, G.
    [J]. PHYSICAL REVIEW B, 2010, 81 (19)
  • [6] Circuit model for graphene-based absorber at low-terahertz frequencies
    Xu, Bing-zheng
    Gu, Chang-qing
    Li, Zhuo
    Liu, Liang-liang
    Niu, Zhen-Yi
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (25)
  • [7] Graphene-based plasma-wave devices for terahertz applications
    Otsuji, Taiichi
    Ryzhii, Victor
    Shur, Michael
    [J]. ADVANCES IN TERAHERTZ BIOMEDICAL IMAGING AND SPECTROSCOPY, 2022, 11975
  • [8] Graphene-Based Photonic Nanostructures for Linear and Nonlinear Devices
    Grande, M.
    Vincenti, M. A.
    Stomeo, T.
    Bianco, G. V.
    de Ceglia, D.
    Magno, G.
    Petruzzelli, V.
    Bruno, G.
    De Vittorio, M.
    Scalora, M.
    D'Orazio, A.
    [J]. 2014 16TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2014,
  • [9] Graphene-based terahertz optoelectronics
    Zhou, Qiangguo
    Qiu, Qinxi
    Huang, Zhiming
    [J]. OPTICS AND LASER TECHNOLOGY, 2023, 157
  • [10] Terahertz photoresponse dependence on magnetic and electric fields in graphene-based devices
    Salman, M.
    Gouider, F.
    Schmidt, H.
    Vasilyev, Yu B.
    Haug, R. J.
    Nachtwei, G.
    [J]. PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 4, 2011, 8 (04): : 1208 - 1210