Hybrid multivariate morphology using lattice auto-associative memories for resting-state fMRI network discovery

被引:0
|
作者
Grana, Manuel [1 ]
Chyzhyk, Darya [1 ]
机构
[1] Univ Basque Country, Dept CCIA, Computat Intelligence Grp, San Sebastian, Spain
关键词
Multivariate Mathematical Morphology; Lattice Computing; fMRI; Resting state; FUNCTIONAL CONNECTIVITY; REGIONAL HOMOGENEITY; SCHIZOPHRENIA; BRAIN; PREDICTION; DISEASE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Analysis of fMRI data, specifically resting-state fMRI data, is performed here from the point of view of a hybrid Multivariate Mathematical Morphology induced by a supervised h-ordering defined on the fMRI time series by the response of Lattice Auto-associative Memories built from specific fMRI voxels. The supervised h-ordering values and the results of morphological filters, i.e. a morphological top-hat, allow to identify some brain networks depending on the seed voxel value. Results on a set of resting state fMRI images of schizophrenia patients and healthy controls show that these networks can be dependent on the subject class, thus providing discriminant findings that may be useful for machine learning approaches.
引用
收藏
页码:537 / 542
页数:6
相关论文
共 33 条
  • [1] On hyperspectral morphology by lattice auto-associative memories supervised orderings
    Veganzones, Miguel A.
    ADVANCES IN KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, 2012, 243 : 2122 - 2129
  • [2] Lattice Auto-Associative Memories induced Supervised Ordering defining a Multivariate Morphology on Hyperspectral data
    Veganzones, Miguel A.
    Grana, Manuel
    2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS), 2012,
  • [3] Autonomous single-pass endmember approximation using lattice auto-associative memories
    Ritter, Gerhard X.
    Urcid, Gonzalo
    Schmalz, Mark S.
    NEUROCOMPUTING, 2009, 72 (10-12) : 2101 - 2110
  • [4] A Hybrid of Deep Network and Hidden Markov Model for MCI Identification with Resting-State fMRI
    Suk, Heung-Il
    Lee, Seong-Whan
    Shen, Dinggang
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT I, 2015, 9349 : 573 - 580
  • [5] Automated Classification of Resting-State fMRI ICA Components Using a Deep Siamese Network
    Chou, Yiyu
    Chang, Catie
    Remedios, Samuel W.
    Butman, John A.
    Chan, Leighton
    Pham, Dzung L.
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [6] Identifying Neural Patterns of Functional Dyspepsia Using Multivariate Pattern Analysis: A Resting-State fMRI Study
    Liu, Peng
    Qin, Wei
    Wang, Jingjing
    Zeng, Fang
    Zhou, Guangyu
    Wen, Haixia
    von Deneen, Karen M.
    Liang, Fanrong
    Gong, Qiyong
    Tian, Jie
    PLOS ONE, 2013, 8 (07):
  • [7] Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI
    Xu, Tingting
    Cullen, Kathryn R.
    Mueller, Bryon
    Schreiner, MindyW.
    Lim, Kelvin O.
    Schulz, S. Charles
    Parhi, Keshab K.
    NEUROIMAGE-CLINICAL, 2016, 11 : 302 - 315
  • [8] Identifying Autism Spectrum Disorder From Resting-State fMRI Using Deep Belief Network
    Huang, Zhi-An
    Zhu, Zexuan
    Yau, Chuen Heung
    Tan, Kay Chen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (07) : 2847 - 2861
  • [9] Presurgical brain mapping of the language network in pediatric patients with epilepsy using resting-state fMRI
    Pur, Daiana R.
    Eagleson, Roy
    Lo, Marcus
    Jurkiewicz, Michael T.
    Andrade, Andrea
    de Ribaupierre, Sandrine
    JOURNAL OF NEUROSURGERY-PEDIATRICS, 2021, 27 (03) : 259 - 268
  • [10] A functional network estimation method of resting-state fMRI using a hierarchical Markov random field
    Liu, Wei
    Awate, Suyash P.
    Anderson, Jeffrey S.
    Fletcher, P. Thomas
    NEUROIMAGE, 2014, 100 : 520 - 534