Graphical representation of data for a multiprocessor array emulating spiking neural networks

被引:0
|
作者
Sokolnicki, Adam [1 ]
Sanchez, Giovanny [2 ]
Madrenas, Jordi [2 ]
Moreno, Manuel [2 ]
Sakowicz, Bartosz [1 ]
机构
[1] Tech Univ Lodz, Dept Microelect & Comp Sci, Fac Elect Elect Comp & Control Engn, PL-90924 Lodz, Poland
[2] Univ Politecn Cataluna, Dept Elect Engn, ES-08034 Barcelona, Spain
来源
PRZEGLAD ELEKTROTECHNICZNY | 2012年 / 88卷 / 11A期
关键词
Spiking neural network; Simulation; Visualizaton; Embeddable script engine; Hardware Emulation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It is crucial for any hardware platform emulating neural networks to have tools that give valuable insight to emulated network. A solution that adresses these needs for the specific multiprocessor array used in the Perplexus project [1] will presented in this paper. It consists of a software that exploits interface between the platform and outside world. It instructs and fetches the needed data from the device. The precise data source is defined by user-defined JavaScripts' expressions that are evaluated by the program and presented simultaneously using waveform, histogram and raster plots in real time.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] EMULATING SPIKING NEURAL NETWORKS FOR EDGE DETECTION ON FPGA HARDWARE
    Glackin, Brendan
    Harkin, Jitn
    McGinnity, Thomas M.
    Maguire, Liam P.
    Wu, Qingxiang
    FPL: 2009 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS, 2009, : 670 - 673
  • [2] Efficient Modelling of Spiking Neural networks on a Scalable Chip Multiprocessor
    Jin, Xin
    Furber, Steve B.
    Woods, John V.
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 2812 - 2819
  • [3] Spiking Neural Networks for Financial Data Prediction
    Reid, David
    Hussain, Abir Jaafar
    Tawfik, Hissam
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [4] Spiking neural networks for deep learning and knowledge representation: Editorial
    Kasabov, Nikola K.
    NEURAL NETWORKS, 2019, 119 : 341 - 342
  • [5] The Heidelberg Spiking Data Sets for the Systematic Evaluation of Spiking Neural Networks
    Cramer, Benjamin
    Stradmann, Yannik
    Schemmel, Johannes
    Zenke, Friedemann
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (07) : 2744 - 2757
  • [6] GRAPHICAL REPRESENTATION OF A BOOLEAN ARRAY
    GUENOCHE, A
    COMPUTERS AND THE HUMANITIES, 1986, 20 (04): : 277 - 281
  • [7] SpiNDeK: An Integrated Design Tool for the Multiprocessor Emulation of Complex Bioinspired Spiking Neural Networks
    Hauptvogel, Michael
    Madrenas, Jordi
    Manuel Moreno, J.
    2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 142 - 149
  • [8] Neuromorphic Data Augmentation for Training Spiking Neural Networks
    Li, Yuhang
    Kim, Youngeun
    Park, Hyoungseob
    Geller, Tamar
    Panda, Priyadarshini
    COMPUTER VISION, ECCV 2022, PT VII, 2022, 13667 : 631 - 649
  • [9] Temporal data encoding and SequenceLearning with spiking neural networks
    Fujii, Robert H.
    Oozeki, Kenjyu
    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 1, 2006, 4131 : 780 - 789
  • [10] Enhanced representation learning with temporal coding in sparsely spiking neural networks
    Fois, Adrien
    Girau, Bernard
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2023, 17