Towards engineering degradation of the explosive pollutant hexahydro-1,3,5-trinitro-1,3,5-triazine in the rhizosphere

被引:15
|
作者
Lorenz, Astrid [1 ]
Rylott, Elizabeth L. [1 ]
Strand, Stuart E. [2 ]
Bruce, Neil C. [1 ]
机构
[1] Univ York, Dept Biol, Ctr Novel Agr Prod, York YO10 5DD, N Yorkshire, England
[2] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
关键词
RDX; rhizosphere; Pseudomonas fluorescens; remediation; explosive; PLANT-GROWTH; RDX; SYSTEM; FATE; PHYTOREMEDIATION; RHIZOREMEDIATION; PLASMID; CLONING; GENES; TNT;
D O I
10.1111/1574-6968.12072
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a serious environmental pollutant on military land. This compound is the most widely used explosive and pollution has arisen primarily as the result of military training, along with munition manufacturing and disassembly processes. This toxic explosive is recalcitrant to degradation in the environment and leaches rapidly into groundwater, where accumulation in aquifers is threatening drinking water supplies (Clausen, etal., 2004). While plants have only limited degradative activity towards RDX, microorganisms, including Rhodococcus rhodochrous 11Y, have been isolated from contaminated land. Despite the presence of microbial RDX-metabolising activity in contaminated soils, the persistence of RDX in leachate from contaminated soil indicates that this activity or biomass is insufficient, limiting its use to remediate polluted soils. Bacterial activity in the rhizosphere is of magnitudes greater than in the surrounding soil, and the roots of grass species on training ranges in the United States are known to penetrate deeply into the soil, producing a compact root system and providing an ideal environment to support the capture of RDX by microorganisms in the rhizosphere. Here, we have investigated the ability of the root-colonising bacterium Pseudomonas fluorescens, engineered to express XplA, to degrade RDX in the rhizosphere.
引用
收藏
页码:49 / 54
页数:6
相关论文
共 50 条
  • [1] Microbial Degradation and Toxicity of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine
    Khan, Muhammad Imran
    Lee, Jaejin
    Park, Joonhong
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 22 (10) : 1311 - 1323
  • [2] Fungal interactions with the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)
    Bayman, P.
    Ritchey, S. D.
    Bennett, J. W.
    Journal of Industrial Microbiology,
  • [3] BIODEGRADATION OF HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE
    MCCORMICK, NG
    CORNELL, JH
    KAPLAN, AM
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1981, 42 (05) : 817 - 823
  • [4] Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum
    Leslie A. Sherburne
    Joshua D. Shrout
    Pedro J.J. Alvarez
    Biodegradation, 2005, 16 : 539 - 547
  • [5] Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum
    Sherburne, LA
    Shrout, JD
    Alvarez, PJJ
    BIODEGRADATION, 2005, 16 (06) : 539 - 547
  • [6] Lateral Transfer of Genes for Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) Degradation
    Andeer, Peter F.
    Stahl, David A.
    Bruce, Neil C.
    Strand, Stuart E.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (10) : 3258 - 3262
  • [7] Transformation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Permanganate
    Chokejaroenrat, Chanat
    Comfort, Steve D.
    Harris, Clifford E.
    Snow, Daniel D.
    Cassada, David
    Sakulthaew, Chainarong
    Satapanajaru, Tunlawit
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (08) : 3643 - 3649
  • [8] Genotoxicity assessment of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)
    Reddy, G
    Erexson, GL
    Cifone, MA
    Major, MA
    Leach, GJ
    INTERNATIONAL JOURNAL OF TOXICOLOGY, 2005, 24 (06) : 427 - 434
  • [9] Metabolism of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a contaminated vadose zone
    Ronen, Zeev
    Yanovich, Yuval
    Goldin, Regina
    Adar, Eilon
    CHEMOSPHERE, 2008, 73 (09) : 1492 - 1498
  • [10] Hexahydro-1,3,5-trinitro-1,3,5-triazine translocation in poplar trees
    Thompson, PL
    Ramer, LA
    Schnoor, JL
    ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 1999, 18 (02) : 279 - 284