Eigenstate extraction with neural-network tomography

被引:26
|
作者
Melkani, Abhijeet [1 ,2 ,4 ]
Gneiting, Clemens [1 ]
Nori, Franco [1 ,3 ]
机构
[1] RIKEN, Theoret Quantum Phys Lab, Cluster Pioneering Res, Wako, Saitama 3510198, Japan
[2] Indian Inst Technol, Dept Phys, Mumbai 400076, Maharashtra, India
[3] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[4] Univ Oregon, Dept Phys, Eugene, OR 97405 USA
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
Quantum optics - Approximation theory - Tomography;
D O I
10.1103/PhysRevA.102.022412
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss quantum state tomography via a stepwise reconstruction of the eigenstates of the mixed states produced in experiments. Our method is tailored to the experimentally relevant class of nearly pure states, or simple mixed states, which exhibit dominant eigenstates and thus lend themselves to low-rank approximations. The developed scheme is applicable to any pure-state tomography method, promoting it to mixed-state tomography. Here, we demonstrate it with machine learning-inspired pure-state tomography based on neural-network representations of quantum states. The latter have been shown to efficiently approximate generic classes of complex (pure) states of large quantum systems. We test our method by applying it to experimental data from trapped ion experiments with four to eight qubits.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Neural-network quantum state tomography
    Torlai, Giacomo
    Mazzola, Guglielmo
    Carrasquilla, Juan
    Troyer, Matthias
    Melko, Roger
    Carleo, Giuseppe
    NATURE PHYSICS, 2018, 14 (05) : 447 - +
  • [2] Neural-network quantum state tomography
    Koutny, Dominik
    Motka, Libor
    Hradil, Zdenek
    Rehacek, Jaroslav
    Sanchez-Soto, Luis L.
    PHYSICAL REVIEW A, 2022, 106 (01)
  • [3] Neural-network approach for optical tomography
    Wang, Jiajun
    Meng, Jing
    Huang, Xianwu
    Feng, Dagan
    SIGNAL PROCESSING, 2006, 86 (09) : 2495 - 2502
  • [4] Neural-network quantum state tomography
    Giacomo Torlai
    Guglielmo Mazzola
    Juan Carrasquilla
    Matthias Troyer
    Roger Melko
    Giuseppe Carleo
    Nature Physics, 2018, 14 : 447 - 450
  • [5] NEURAL-NETWORK FOR PATTERN ASSOCIATION IN ELECTRICAL CAPACITANCE TOMOGRAPHY
    NOORALAHIYAN, AY
    HOYLE, BS
    BAILEY, NJ
    IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 1994, 141 (06): : 517 - 521
  • [6] FEATURE-EXTRACTION PREPROCESSING AND OPTICAL NEURAL-NETWORK
    TOHYAMA, I
    KONDOH, M
    YATAGAI, T
    MORI, M
    HAYASAKI, Y
    OPTICAL COMPUTING, 1995, 139 : 447 - 450
  • [7] EXTRACTION OF FEATURE ATTENTIVE REGIONS IN A LEARNT NEURAL-NETWORK
    SANO, H
    NADA, A
    IWAHORI, Y
    ISHII, N
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1994, E77D (04) : 482 - 489
  • [8] NEURAL-NETWORK
    UEMURA, K
    JOURNAL OF THE JAPANESE SOCIETY FOR FOOD SCIENCE AND TECHNOLOGY-NIPPON SHOKUHIN KAGAKU KOGAKU KAISHI, 1995, 42 (07): : 541 - 541
  • [9] Graded information extraction by neural-network dynamics with multihysteretic neurons
    Tsuboshita, Yukihiro
    Okamoto, Hiroshi
    NEURAL NETWORKS, 2009, 22 (07) : 922 - 930
  • [10] OPTICAL NEURAL-NETWORK USING VECTOR-FEATURE EXTRACTION
    KURATOMI, Y
    TAKIMOTO, A
    AKIYAMA, K
    OGAWA, H
    APPLIED OPTICS, 1993, 32 (29): : 5750 - 5758