Detection of Differential Abundance Intervals in Longitudinal Metagenomic Data Using Negative Binomial Smoothing Spline ANOVA

被引:3
|
作者
Metwally, Ahmed A. [1 ]
Finn, Patricia W. [2 ]
Dai, Yang [3 ]
Perkins, David L. [1 ]
机构
[1] Univ Illinois, Dept Bioengn & Med, Chicago, IL 60612 USA
[2] Univ Illinois, Dept Med, Chicago, IL 60612 USA
[3] Univ Illinois, Dept Bioengn, Chicago, IL 60612 USA
关键词
Metagenomics; Microbiome; Differential Abundance; Longitudinal Studies; Smoothing Splines; Negative Binomial Distribution; BIOCONDUCTOR PACKAGE; HUMAN MICROBIOME; HEALTH;
D O I
10.1145/3107411.3107429
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metagenomic longitudinal studies have become a widely-used study design to investigate the dynamics of the microbial ecological systems and their temporal effects. One of the important questions to be addressed in longitudinal studies is the identification of time intervals when microbial features show changes in their abundance. We propose a statistical method that is based on a semi-parametric Smoothing Spline ANOVA and negative binomial distribution to model the time-course of the features between two phenotypes. We demonstrate the superior performance of our proposed method compared to the two currently existing methods using simulated data. We present the analysis results of our proposed method in an analysis of a longitudinal dataset that investigates the association between the development of type 1 diabetes in infants and the gut microbiome. The identified significant species and their specific time intervals reveal new information that can be used in improving intervention or treatment plans.
引用
收藏
页码:295 / 304
页数:10
相关论文
共 6 条
  • [1] Analyzing Longitudinal Data Using Gee-Smoothing Spline
    Ibrahim, Noor Akma
    Suliadi
    [J]. PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE: APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE, 2009, : 26 - +
  • [2] Analyzing Longitudinal Data Using Natural Cubic Smoothing Spline
    Marcoulides, Katerina M.
    Khojasteh, Jam
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (06) : 965 - 971
  • [3] Crash frequency modeling using negative binomial models: An application of generalized estimating equation to longitudinal data
    Mohammadi, Mojtaba A.
    Samaranayake, V. A.
    Bham, Ghulam H.
    [J]. ANALYTIC METHODS IN ACCIDENT RESEARCH, 2014, 2 (52-69) : 52 - 69
  • [4] Normalizing Metagenomic Hi-C Data and Detecting Spurious Contacts Using Zero-Inflated Negative Binomial Regression
    Du, Yuxuan
    Laperriere, Sarah M.
    Fuhrman, Jed
    Sun, Fengzhu
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (02) : 106 - 120
  • [5] Sample size calculations for the differential expression analysis of RNA-seq data using a negative binomial regression model
    Li, Xiaohong
    Wu, Dongfeng
    Cooper, Nigel G. F.
    Rai, Shesh N.
    [J]. STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2019, 18 (01)
  • [6] Outlier Detection using Optimal B-spline Smoothing with Application to Data Compression of Digital-Ink with Pen-Slip
    Fujioka, Hiroyuki
    Kano, Hiroyuki
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL (ISIC), 2014, : 1877 - 1882