Existence and stability of periodic solution of a Lotka-Volterra predator-prey model with state dependent impulsive effects

被引:65
|
作者
Nie, Linfei [1 ,2 ]
Peng, Jigen [3 ]
Teng, Zhidong [1 ]
Hu, Lin [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xi An Jiao Tong Univ, Dept Appl Math, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, Res Ctr Appl Math, Inst Informat & Syst Sci, Xian 710049, Peoples R China
关键词
Impulsive differential equations; State-dependent; Lotka-Volterra predator-prey system; Periodic solution; Lambert W function; PULSE VACCINATION STRATEGY; SYSTEMS; PERMANENCE;
D O I
10.1016/j.cam.2008.05.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
According to biological and chemical control strategy for pest, we investigate the dynamic behavior of a Lotka-Volterra predator-prey state-dependent impulsive system by releasing natural enemies and spraying pesticide at different thresholds. By using Poincare map and the properties of the Lambert W function, we prove that the sufficient conditions for the existence and stability of semi-trivial solution and positive periodic Solution. Numerical Simulations are carried Out to illustrate the feasibility Of Our main results. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:544 / 555
页数:12
相关论文
共 50 条
  • [1] THE PERIODIC PREDATOR-PREY LOTKA-VOLTERRA MODEL WITH IMPULSIVE EFFECT
    Tang, Sanyi
    Chen, Lansun
    [J]. JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2002, 2 (3-4) : 267 - 296
  • [2] The dynamics of a Lotka-Volterra predator-prey model with state dependent impulsive harvest for predator
    Nie, Linfei
    Teng, Zhidong
    Hu, Lin
    Peng, Jigen
    [J]. BIOSYSTEMS, 2009, 98 (02) : 67 - 72
  • [3] Existence and stability of periodic solution of a predator-prey model with state-dependent impulsive effects
    Nie, Linfei
    Teng, Zhidong
    Hu, Lin
    Peng, Jigen
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (07) : 2122 - 2134
  • [4] A note on stability criteria in the periodic Lotka-Volterra predator-prey model
    Ortega, Victor
    Rebelo, Carlota
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 145
  • [5] Stability of synchronized steady state solution of diffusive Lotka-Volterra predator-prey model
    Huang, Yongyan
    Li, Fuyi
    Shi, Junping
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 105
  • [6] Periodic solution of a Lotka-Volterra predator-prey model with dispersion and time delays
    Xu, R
    Chaplain, MAJ
    Davidson, FA
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (02) : 537 - 560
  • [7] Existence and Uniqueness of the Positive Steady State Solution for a Lotka-Volterra Predator-Prey Model with a Crowding Term
    Xianzhong Zeng
    Lingyu Liu
    Weiyuan Xie
    [J]. Acta Mathematica Scientia, 2020, 40 : 1961 - 1980
  • [8] EXISTENCE AND UNIQUENESS OF THE POSITIVE STEADY STATE SOLUTION FOR A LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH A CROWDING TERM
    曾宪忠
    刘玲妤
    谢伟圆
    [J]. Acta Mathematica Scientia, 2020, 40 (06) : 1961 - 1980
  • [9] EXISTENCE AND UNIQUENESS OF THE POSITIVE STEADY STATE SOLUTION FOR A LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH A CROWDING TERM
    Zeng, Xianzhong
    Liu, Lingyu
    Xie, Weiyuan
    [J]. ACTA MATHEMATICA SCIENTIA, 2020, 40 (06) : 1961 - 1980
  • [10] Attraction Region for the Classical Lotka-Volterra Predator-Prey model Caused by impulsive Effects
    Sugie, Jitsuro
    Ishihara, Yoshiki
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (02)