Adaptive kernel canonical correlation analysis algorithms for nonparametric identification of Wiener and Hammerstein systems

被引:7
|
作者
Van Vaerenbergh, Steven [1 ]
Via, Javier [1 ]
Santamaria, Ignacio [1 ]
机构
[1] Univ Cantabria, Dept Commun Engn, Cantabria 39005, Spain
关键词
D O I
10.1155/2008/875351
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper treats the identification of nonlinear systems that consist of a cascade of a linear channel and a nonlinearity, such as the well-known Wiener and Hammerstein systems. In particular, we follow a supervised identification approach that simultaneously identifies both parts of the nonlinear system. Given the correct restrictions on the identification problem, we show how kernel canonical correlation analysis (KCCA) emerges as the logical solution to this problem. We then extend the proposed identification algorithm to an adaptive version allowing to deal with time-varying systems. In order to avoid overfitting problems, we discuss and compare three possible regularization techniques for both the batch and the adaptive versions of the proposed algorithm. Simulations are included to demonstrate the effectiveness of the presented algorithm. Copyright (c) 2008.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Adaptive Kernel Canonical Correlation Analysis Algorithms for Nonparametric Identification of Wiener and Hammerstein Systems
    Steven Van Vaerenbergh
    Javier Vía
    Ignacio Santamaría
    EURASIP Journal on Advances in Signal Processing, 2008
  • [2] Nonparametric approach to identification of Hammerstein and Wiener systems
    Chen, HF
    Hu, XL
    2005 International Conference on Control and Automation (ICCA), Vols 1 and 2, 2005, : 59 - 64
  • [3] Blind Identification of SIMO Wiener Systems Based on Kernel Canonical Correlation Analysis
    VanVaerenbergh, Steven
    Via, Javier
    Santamaria, Ignacio
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (09) : 2219 - 2230
  • [4] Recursive Identification of Wiener-Hammerstein Systems with Nonparametric Nonlinearity
    Hu, Xiao-Li
    Jiang, Yue-Ping
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2013, 3 (04) : 311 - 332
  • [5] Online kernel canonical correlation analysis for supervised equalization of Wiener systems
    Van Vaerenbergh, Steven
    Via, Javier
    Santamaria, Ignacio
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1198 - +
  • [6] Nonparametric models for Hammerstein-Wiener and Wiener-Hammerstein system identification
    Risuleo, Riccardo S.
    Hjalmarsson, Hakan
    IFAC PAPERSONLINE, 2020, 53 (02): : 407 - 412
  • [7] ADAPTIVE KERNEL CANONICAL CORRELATION ANALYSIS ALGORITHMS FOR MAXIMUM AND MINIMUM VARIANCE
    Van Vaerenbergh, S.
    Via, J.
    Manco-Vasquez, J.
    Santamaria, I.
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3587 - 3591
  • [8] A KERNEL CANONICAL CORRELATION ANALYSIS ALGORITHM FOR BLIND EQUALIZATION OF OVERSAMPLED WIENER SYSTEMS
    Van Vaerenbergh, Steven
    Via, Javier
    Santamaria, Ignacio
    2008 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2008, : 20 - 25
  • [9] Identification of Wiener-Hammerstein systems by a nonparametric separation of the best linear approximation
    Schoukens, Maarten
    Pintelon, Rik
    Rolain, Yves
    AUTOMATICA, 2014, 50 (02) : 628 - 634
  • [10] NONPARAMETRIC IDENTIFICATION OF HAMMERSTEIN SYSTEMS
    GREBLICKI, W
    PAWLAK, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (02) : 409 - 418