Phase transition in the assignment problem for random matrices

被引:1
|
作者
Esteve, JG [1 ]
Falceto, F
机构
[1] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Inst Biocomputac & Fis Sistemas Complejos, Zaragoza, Spain
来源
EUROPHYSICS LETTERS | 2005年 / 72卷 / 05期
关键词
D O I
10.1209/epl/i2005-10296-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report an analytic and numerical study of a phase transition in a P problem (the assignment problem) that separates two phases whose representatives are the simple matching problem (an easy P problem) and the traveling-salesman problem (a NP-complete problem). Like other phase transitions found in combinatoric problems (K-satisfiability, number partitioning) this can help to understand the nature of the difficulties in solving NP problems an to find more accurate algorithms for them.
引用
收藏
页码:691 / 697
页数:7
相关论文
共 50 条
  • [1] On the number of k-cycles in the assignment problem for random matrices
    Esteve, Jose G.
    Falceto, Fernando
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [2] PHASE TRANSITION IN A SEQUENTIAL ASSIGNMENT PROBLEM ON GRAPHS
    Jarai, Antal A.
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 2098 - 2129
  • [3] A phase transition for the limiting spectral density of random matrices
    Friesen, Olga
    Loewe, Matthias
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 17
  • [4] Lyapunov Exponent, Universality and Phase Transition for Products of Random Matrices
    Dang-Zheng Liu
    Dong Wang
    Yanhui Wang
    Communications in Mathematical Physics, 2023, 399 : 1811 - 1855
  • [5] Lyapunov Exponent, Universality and Phase Transition for Products of Random Matrices
    Liu, Dang-Zheng
    Wang, Dong
    Wang, Yanhui
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 399 (03) : 1811 - 1855
  • [6] The Random Quadratic Assignment Problem
    Gerald Paul
    Jia Shao
    H. Eugene Stanley
    Journal of Statistical Physics, 2011, 145 : 734 - 744
  • [7] ASYMPTOTICS IN THE RANDOM ASSIGNMENT PROBLEM
    ALDOUS, D
    PROBABILITY THEORY AND RELATED FIELDS, 1992, 93 (04) : 507 - 534
  • [8] The Random Quadratic Assignment Problem
    Paul, Gerald
    Shao, Jia
    Stanley, H. Eugene
    JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (03) : 734 - 744
  • [9] The Random Hypergraph Assignment Problem
    Borndoerfer, Ralf
    Heismann, Olga
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2015, 39 (03): : 229 - 235
  • [10] Uncertain random assignment problem
    Ding, Sibo
    Zeng, Xiao-Jun
    APPLIED MATHEMATICAL MODELLING, 2018, 56 : 96 - 104