Microstructure and dry sliding wear behaviour of titania and alumina-titania coatings

被引:6
|
作者
Vadiraj, A. [1 ]
Kamaraj, M. [2 ]
Sreenivasan, V. S. [1 ]
机构
[1] Ashok Leyland Tech Ctr, Madras 600103, Tamil Nadu, India
[2] Indian Inst Technol, Dept Met & Mat Engn, Madras 600036, Tamil Nadu, India
关键词
Hard coatings; Friction; Wear; Microstructure; MECHANICAL-PROPERTIES; PLASMA; TIO2; LUBRICATION;
D O I
10.1179/1743294411Y.0000000068
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The microstructure, hardness and wear properties of atmospheric plasma spray coating of TiO2 and Al2O3-13TiO(2) with incremental hydrogen fractions (11.1-23.8%) in primary gas have been investigated in this work. TiO2 coating shows a fine bead-like surface structure, while Al2O3-13TiO(2) predominantly exhibits a splat-like morphology. The microstructure shows a slight refinement in the structure for the highest hydrogen content possibly due to the higher specific enthalpy of the plasma plume. Both coatings show the highest hardness for samples coated with the highest hydrogen content possibly due to the refined structure. The roughness shows a mild decreasing trend for TiO2 coating, while the reverse trend is observed for Al2O3-13TiO(2) coating. The wear loss and friction coefficient show a flat trend (0.4-0.6) for all the hydrogen contents. The worn tracks show a compacted mixture of ceramic, graphite and metallic particles.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 50 条
  • [1] Effect of APS process parameters on wear behaviour of alumina-titania coatings
    Bounazef, M
    Guessasma, S
    Montavon, G
    Coddet, C
    MATERIALS LETTERS, 2004, 58 (20) : 2451 - 2455
  • [2] Wear behaviour of nanostructured alumina-titania coatings deposited by atmospheric plasma spray
    Rico, A.
    Rodriguez, J.
    Otero, E.
    Zeng, P.
    Rainforth, W. M.
    WEAR, 2009, 267 (5-8) : 1191 - 1197
  • [3] Wear of plasma-sprayed alumina-titania coatings
    Zatorski, R.A.
    Herman, H.
    Materials Science Monographs, 1991, 67
  • [4] Note on POD test parameters to study wear behaviour of alumina-titania coatings
    Guessasma, S
    Bounazef, M
    Coddet, C
    MATERIALS CHARACTERIZATION, 2004, 52 (03) : 237 - 241
  • [5] Wear behavior of alumina-titania coatings: analysis of process and parameters
    Guessasma, S
    Bounazef, M
    Nardin, P
    Sahraoui, T
    CERAMICS INTERNATIONAL, 2006, 32 (01) : 13 - 19
  • [6] Effect of Tribo-layer on the Sliding Wear Behavior of Detonation Sprayed Alumina-Titania Coatings
    Rao, P. Uday Chandra
    Babu, P. Suresh
    Rao, D. Srinivasa
    Krishna, S. V. Gopala
    Rao, K. Venkateswara
    INTELLIGENT MANUFACTURING AND ENERGY SUSTAINABILITY, ICIMES 2019, 2020, 169 : 289 - 298
  • [7] A study on wear and corrosion behaviour of thermally sprayed alumina-titania composite coatings on aluminium alloys
    Mindivan, H.
    KOVOVE MATERIALY-METALLIC MATERIALS, 2010, 48 (03): : 203 - 210
  • [8] Effects of the powder manufacturing method on microstructure and wear performance of plasma sprayed alumina-titania coatings
    Wang, Meidong
    Shaw, Leon L.
    SURFACE & COATINGS TECHNOLOGY, 2007, 202 (01): : 34 - 44
  • [9] Microstructure, adhesion, microhardness, abrasive wear resistance and electrical resistivity of the plasma sprayed alumina and alumina-titania coatings
    Ramachandran, K
    Selvarajan, V
    Ananthapadmanabhan, PV
    Sreekumar, KP
    THIN SOLID FILMS, 1998, 315 (1-2) : 144 - 152
  • [10] High Temperature Oxidation Behaviour of Nanostructured Alumina-Titania APS Coatings
    Rico, A.
    Rodriguez, J.
    Otero, E.
    OXIDATION OF METALS, 2010, 73 (5-6): : 531 - 550