Boundedness of multilinear commutators of generalized fractional integrals

被引:9
|
作者
Mo, Huixia [2 ]
Lu, Shanzhen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
关键词
multilinear commutator; generalized fractional integral; Gaussian bound; Lipschitz function space;
D O I
10.1002/mana.200510681
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be the infinitesimal generator of an analytic semigroup on L-2(R-n) with Gaussian kernel bound, and let L-alpha/2 be the fractional integral of L for 0 < alpha < n. Suppose that (b) over right arrow = (b(1), b(2), ..., b(m)) is a finite family of locally integral functions, then the multilinear commutator generated by (b) over right arrow and L-alpha/2 is defined by L((b) over right arrow)(-alpha/2)f = [b(m), ..., [b(2), [b(1,) L-alpha/2]], ...,] f, where m is an element of Z(+). When b(1), b(2), ..., b(m) is an element of BMO or b(j) is an element of Lambda over dot(beta j) (0 < beta(j) < 1) for 1 <= j <= m, the authors study the boundedness of L-(b) over right arrow(-alpha/2). (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:1328 / 1340
页数:13
相关论文
共 50 条