Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations

被引:64
|
作者
Wang, Zhiguo [1 ,2 ]
Zhou, Y. G. [1 ]
Bang, Junhyeok [3 ]
Prange, M. P. [2 ]
Zhang, S. B. [3 ]
Gao, Fei [2 ]
机构
[1] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China
[2] Pacific NW Natl Lab, Richland, WA 99352 USA
[3] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2012年 / 116卷 / 30期
关键词
GRAIN-BOUNDARIES; CARBON NANOTUBES; POINT-DEFECTS; GRAPHITE;
D O I
10.1021/jp303905u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Defects play an important role on the unique properties of the sp(2)-bonded materials, such as graphene. The creation and evolution of monovacancy, divacancy, Stone-Wales (SW), and grain boundaries (GBs) under irradiation in graphene are investigated using density functional theory and time-dependent density functional theory molecular dynamics simulations. It is of great interest that the patterns of these defects can be controlled through electron irradiation. The SW defects can be created by electron irradiation with energy above the displacement threshold energy (T-d, similar to 19 eV) and can be healed with an energy (14-18 eV) lower than Td. The transformation between four types of divacancies-V-2(5-8-5), V-2(555-777), V-2(5555-6-7777), and V-2(55-77)-can be realized through bond rotation induced by electron irradiation. The migrations of divancancies, SW defects, and GBs can also be controlled by electron irradiation. Thus, electron irradiation can serve as an important tool to modify morphology in a controllable manner and to tailor the physical properties of graphene.
引用
收藏
页码:16070 / 16079
页数:10
相关论文
共 50 条
  • [1] Molecular dynamics simulations of defect production in graphene by carbon irradiation
    Martinez-Asencio, J.
    Caturla, M. J.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2015, 352 : 225 - 228
  • [2] Ab initio molecular dynamics simulations
    Tuckerman, ME
    Ungar, PJ
    vonRosenvinge, T
    Klein, ML
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31): : 12878 - 12887
  • [3] Ab initio molecular orbital/molecular dynamics simulations of electron transfer.
    Wheeler, RA
    Skokov, S
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U266 - U266
  • [4] Molecular dynamics study of the structural modification of graphene by electron irradiation
    Asayama, Yoshiki
    Yasuda, Masaaki
    Tada, Kazuhiro
    Kawata, Hiroaki
    Hirai, Yoshihiko
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2012, 30 (06):
  • [5] Ab initio molecular dynamics simulations of molecular crystals
    Tuckerman, ME
    vonRosenvinge, T
    Klein, ML
    [J]. MATERIALS THEORY, SIMULATIONS, AND PARALLEL ALGORITHMS, 1996, 408 : 477 - 488
  • [6] Water Structures at Metal Electrodes Studied by Ab Initio Molecular Dynamics Simulations
    Gross, Axel
    Gossenberger, Florian
    Lin, Xiaohang
    Naderian, Maryam
    Sakong, Sung
    Roman, Tanglaw
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (08) : E3015 - E3020
  • [7] Ab initio molecular dynamics simulations of molecular collisions of nitromethane
    Wei, DQ
    Zhang, F
    Woo, TK
    [J]. SHOCK COMPRESSION OF CONDENSED MATTER-2001, PTS 1 AND 2, PROCEEDINGS, 2002, 620 : 407 - 410
  • [8] Amorphous zirconia: ab initio molecular dynamics simulations
    Durandurdu, Murat
    [J]. PHILOSOPHICAL MAGAZINE, 2017, 97 (16) : 1334 - 1345
  • [9] Ab initio molecular dynamics simulations of organometallic reactivity
    De Angelis, Filippo
    Fantacci, Simona
    Sgamellotti, Antonio
    [J]. COORDINATION CHEMISTRY REVIEWS, 2006, 250 (11-12) : 1497 - 1513
  • [10] Ab initio molecular dynamics simulations of reactions at surfaces
    Gross, A
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2000, 217 (01): : 389 - 404