generalized linear mixed models (GLMMs);
Laplace approximation;
logistic models;
longitudinal data analysis;
non-normal random effects;
LONGITUDINAL SEMICONTINUOUS DATA;
MEDICAL COST DATA;
BIAS CORRECTION;
DEPENDENCE;
DISPERSION;
INFERENCE;
SPLINES;
TRIAL;
D O I:
10.1002/sim.5528
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
In this article, we implement a practical computational method for various semiparametric mixed effects models, estimating nonlinear functions by penalized splines. We approximate the integration of the penalized likelihood with respect to random effects with the use of adaptive Gaussian quadrature, which we can conveniently implement in SAS procedure NLMIXED. We carry out the selection of smoothing parameters through approximated generalized cross-validation scores. Our method has two advantages: (1) the estimation is more accurate than the current available quasi-likelihood method for sparse data, for example, binary data; and (2) it can be used in fitting more sophisticated models. We show the performance of our approach in simulation studies with longitudinal outcomes from three settings: binary, normal data after BoxCox transformation, and count data with log-Gamma random effects. We also develop an estimation method for a longitudinal two-part nonparametric random effects model and apply it to analyze repeated measures of semicontinuous daily drinking records in a randomized controlled trial of topiramate. Copyright (c) 2012 John Wiley & Sons, Ltd.
机构:
INSA Rouen, Dept Genie Math, St Etienne, FranceINSA Rouen, Dept Genie Math, St Etienne, France
Michelot, Theo
Langrock, Roland
论文数: 0引用数: 0
h-index: 0
机构:
Univ St Andrews, Sch Math & Stat, St Andrews, Fife, Scotland
Univ St Andrews, Ctr Res Ecol & Environm Modelling, St Andrews, Fife, ScotlandINSA Rouen, Dept Genie Math, St Etienne, France
Langrock, Roland
Kneib, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Gottingen, Dept Econ, D-37073 Gottingen, GermanyINSA Rouen, Dept Genie Math, St Etienne, France
Kneib, Thomas
King, Ruth
论文数: 0引用数: 0
h-index: 0
机构:
Univ St Andrews, Sch Math & Stat, St Andrews, Fife, Scotland
Univ St Andrews, Ctr Res Ecol & Environm Modelling, St Andrews, Fife, ScotlandINSA Rouen, Dept Genie Math, St Etienne, France
机构:
Univ Rochester, Med Ctr, Dept Biostat & Computat Biol, Rochester, NY 14642 USAUniv Rochester, Med Ctr, Dept Biostat & Computat Biol, Rochester, NY 14642 USA
Liu, Xiang
Peng, Yingwei
论文数: 0引用数: 0
h-index: 0
机构:
Queens Univ, Dept Community Hlth & Epidemiol, Kingston, ON K7L 3N6, CanadaUniv Rochester, Med Ctr, Dept Biostat & Computat Biol, Rochester, NY 14642 USA
Peng, Yingwei
Tu, Dongsheng
论文数: 0引用数: 0
h-index: 0
机构:
Queens Univ, Dept Community Hlth & Epidemiol, Kingston, ON K7L 3N6, CanadaUniv Rochester, Med Ctr, Dept Biostat & Computat Biol, Rochester, NY 14642 USA
Tu, Dongsheng
Liang, Hua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rochester, Med Ctr, Dept Biostat & Computat Biol, Rochester, NY 14642 USAUniv Rochester, Med Ctr, Dept Biostat & Computat Biol, Rochester, NY 14642 USA