PERIODIC ORBITS FOR MULTIVALUED MAPS WITH CONTINUOUS MARGINS OF INTERVALS

被引:1
|
作者
Mai, Jiehua [1 ]
Sun, Taixiang [1 ]
机构
[1] Guangxi Univ Finance & Econ, Coll Informat & Stat, Nanning 530003, Guangxi, Peoples R China
关键词
Multivalued map; interval map; periodic orbit; period; Sharkovskii's order; DIFFERENTIAL-INCLUSIONS; SHARKOVSKIIS THEOREM; VERSION; SELECTIONS;
D O I
10.12775/TMNA.2016.052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I be a bounded connected subset of R containing more than one point, and L(I) be the family of all nonempty connected subsets of I. Each map from I to L(I) is called a multivalued map. A multivalued map F: I -> L(I) is called a multivalued map with continuous margins if both the left endpoint and the right endpoint functions of F are continuous. We show that the well-known Sharkovskii theorem for interval maps also holds for every multivalued map with continuous margins F: I -> L(I), that is, if F has an n-periodic orbit and n > m (in the Sharkovskii ordering), then F also has an m-periodic orbit.
引用
收藏
页码:453 / 464
页数:12
相关论文
共 50 条
  • [1] Stability of Periodic Orbits and Return Trajectories of Continuous Multi-valued Maps on Intervals
    Tai Xiang SUN
    Fan Ping ZENG
    Guang Wang SU
    Bin QIN
    [J]. Acta Mathematica Sinica, 2018, 34 (07) : 1121 - 1130
  • [2] Stability of Periodic Orbits and Return Trajectories of Continuous Multi-valued Maps on Intervals
    Tai Xiang SUN
    Fan Ping ZENG
    Guang Wang SU
    Bin QIN
    [J]. Acta Mathematica Sinica,English Series, 2018, (07) : 1121 - 1130
  • [3] Stability of Periodic Orbits and Return Trajectories of Continuous Multi-valued Maps on Intervals
    Tai Xiang Sun
    Fan Ping Zeng
    Guang Wang Su
    Bin Qin
    [J]. Acta Mathematica Sinica, English Series, 2018, 34 : 1121 - 1130
  • [4] Stability of Periodic Orbits and Return Trajectories of Continuous Multi-valued Maps on Intervals
    Sun, Tai Xiang
    Zeng, Fan Ping
    Su, Guang Wang
    Qin, Bin
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (07) : 1121 - 1130
  • [5] On almost periodic multivalued maps
    L. I. Danilov
    [J]. Mathematical Notes, 2000, 68 (1) : 71 - 77
  • [6] On almost periodic multivalued maps
    Danilov, LI
    [J]. MATHEMATICAL NOTES, 2000, 68 (1-2) : 71 - 77
  • [7] Role of short periodic orbits in quantum maps with continuous openings
    Prado, Carlos A.
    Carlo, Gabriel G.
    Benito, R. M.
    Borondo, F.
    [J]. PHYSICAL REVIEW E, 2018, 97 (04)
  • [8] On multivalued maps for φ-contractions involving orbits with application
    Ali, Amjad
    Arshad, Muhammad
    Asif, Awais
    Savas, Ekrem
    Park, Choonkil
    Shin, Dong Yun
    [J]. AIMS MATHEMATICS, 2021, 6 (07): : 7532 - 7554
  • [9] Finite orbits in multivalued maps and Bernoulli convolutions
    Bandt, Christoph
    [J]. ADVANCES IN MATHEMATICS, 2018, 324 : 437 - 485
  • [10] On Weyl almost periodic selections of multivalued maps
    Danilov, LI
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 316 (01) : 110 - 127