Behavior of gapped and ungapped Dirac cones in the antiferromagnetic topological metal SmBi

被引:7
|
作者
Sakhya, Anup Pradhan [1 ]
Kumar, Shiv [2 ]
Pramanik, Arindam [1 ]
Pandeya, Ram Prakash [1 ]
Verma, Rahul [1 ]
Singh, Bahadur [1 ]
Datta, Sawani [1 ]
Sasmal, Souvik [1 ]
Mondal, Rajib [1 ]
Schwier, Eike F. [2 ]
Shimada, Kenya [2 ]
Thamizhavel, A. [1 ]
Maiti, Kalobaran [1 ]
机构
[1] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Homi Bhabha Rd, Mumbai 400005, India
[2] Hiroshima Univ, Hiroshima Synchrotron Radiat Ctr, 2 313 Kagamiyama, Hiroshima 7390046, Japan
关键词
ARPES SYSTEM; ENERGY; STATES;
D O I
10.1103/PhysRevB.106.085132
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We studied the behavior of nontrivial Dirac fermion states in the antiferromagnetic metal SmBi using angle-resolved photoemission spectroscopy (ARPES). The experimental results exhibit multiple Fermi pockets around the (gamma) over the bar and (M) over the bar points along with a band inversion in the spectrum along the (gamma) over the bar -(M) over the bar line consistent with the density functional theory results. In addition, ARPES data reveal Dirac cones at the (gamma) over the bar and (M) over the bar points within the energy gap of the bulk bands. The Dirac cone at (M) over the bar exhibits a distinct Dirac point and is intense in the high-photon-energy data, while the Dirac cone at (gamma) over the bar is intense at low photon energies. Employing ultrahigh-resolution ARPES, we discover destruction of a Fermi surface constituted by the surface states across the Neel temperature of 9 K. Interestingly, the Dirac cone at (gamma) over the bar is found to be gapped at 15 K, and the behavior remains similar across the magnetic transition. These results reveal complex momentum-dependent gap formation and Fermi surface destruction across the magnetic transition in an exotic correlated topological material; the interplay between magnetism and topology in this system calls for ideas beyond the existing theoretical models.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Antiferromagnetic topological insulator with selectively gapped Dirac cones
    A. Honma
    D. Takane
    S. Souma
    K. Yamauchi
    Y. Wang
    K. Nakayama
    K. Sugawara
    M. Kitamura
    K. Horiba
    H. Kumigashira
    K. Tanaka
    T. K. Kim
    C. Cacho
    T. Oguchi
    T. Takahashi
    Yoichi Ando
    T. Sato
    [J]. Nature Communications, 14
  • [2] Antiferromagnetic topological insulator with selectively gapped Dirac cones
    Honma, A.
    Takane, D.
    Souma, S.
    Yamauchi, K.
    Wang, Y.
    Nakayama, K.
    Sugawara, K.
    Kitamura, M.
    Horiba, K.
    Kumigashira, H.
    Tanaka, K.
    Kim, T. K.
    Cacho, C.
    Oguchi, T.
    Takahashi, T.
    Ando, Yoichi
    Sato, T.
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] Gapped Dirac cones and spin texture in thin film topological insulator
    Thalmeier, Peter
    Akbari, Alireza
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [4] Realization of Gapped and Ungapped Photonic Topological Anderson Insulators
    Ren, Mina
    Yu, Ye
    Wu, Bintao
    Qi, Xin
    Wang, Yiwei
    Yao, Xiaogang
    Ren, Jie
    Guo, Zhiwei
    Jiang, Haitao
    Chen, Hong
    Liu, Xiong-Jun
    Chen, Zhigang
    Sun, Yong
    [J]. PHYSICAL REVIEW LETTERS, 2024, 132 (06)
  • [5] Multiple Dirac cones at the surface of the topological metal LaBi
    Jayita Nayak
    Shu-Chun Wu
    Nitesh Kumar
    Chandra Shekhar
    Sanjay Singh
    Jörg Fink
    Emile E. D. Rienks
    Gerhard H. Fecher
    Stuart S. P. Parkin
    Binghai Yan
    Claudia Felser
    [J]. Nature Communications, 8
  • [6] Multiple Dirac cones at the surface of the topological metal LaBi
    Nayak, Jayita
    Wu, Shu-Chun
    Kumar, Nitesh
    Shekhar, Chandra
    Singh, Sanjay
    Fink, Joerg
    Rienks, Emile E. D.
    Fecher, Gerhard H.
    Parkin, Stuart S. P.
    Yan, Binghai
    Felser, Claudia
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [7] Strong topological metal material with multiple Dirac cones
    Ji, Huiwen
    Pletikosic, I.
    Gibson, Q. D.
    Sahasrabudhe, Girija
    Valla, T.
    Cava, R. J.
    [J]. PHYSICAL REVIEW B, 2016, 93 (04)
  • [8] Dirac Nodal Line Metal for Topological Antiferromagnetic Spintronics
    Shao, Ding-Fu
    Gurung, Gautam
    Zhang, Shu-Hui
    Tsymbal, Evgeny Y.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (07)
  • [9] Topological Valley Currents in Gapped Dirac Materials
    Lensky, Yuri D.
    Song, Justin C. W.
    Samutpraphoot, Polnop
    Levitov, Leonid S.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (25)
  • [10] 'Real' Gerbes and Dirac Cones of Topological Insulators
    Gomi, Kiyonori
    Guo Chuan Thiang
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (03) : 1507 - 1555