Modification of a Buried Interface with Bulky Organic Cations for Highly Stable Flexible Perovskite Solar Cells

被引:2
|
作者
Dasgupta, Shyantan [1 ,2 ]
Zuraw, Wiktor [1 ,3 ]
Ahmad, Taimoor [1 ]
Castriotta, Luigi Angelo [4 ]
Radicchi, Eros [5 ,6 ]
Mroz, Wojciech [7 ,8 ]
Scigaj, Mateusz [9 ]
Pawlaczyk, Lukasz [10 ]
Tamulewicz-Szwajkowska, Magdalena [10 ]
Trzcinski, Marek [11 ]
Serafinczuk, Jaroslaw [10 ,12 ]
Mosconi, Edoardo [5 ]
Di Carlo, Aldo [4 ]
De Angelis, Filippo [5 ,13 ,14 ,15 ]
Dudkowiak, Alina [2 ]
Wojciechowski, Konrad [1 ]
机构
[1] Saule Res Inst, PL-54427 Wroclaw, Poland
[2] Poznan Univ Tech, Fac Mat Engn & Tech Phys, PL-60965 Poznan, Poland
[3] Wroclaw Univ Sci & Technol, Dept Semicond Mat Engn, PL-50370 Wroclaw, Poland
[4] Univ Roma Tor Vergata, Ctr Hybrid & Organ Solar Energy CHOSE, Dept Elect Engn, I-00133 Rome, Italy
[5] Ist CNR Sci & Tecnol Chim Giulio Natta CNR SCITEC, Computat Lab Hybrid Organ Photovolta CLHYO, I-06123 Perugia, PG, Italy
[6] Univ Verona, Dept Biotechnol, Nanomat Res Grp, I-37134 Verona, Italy
[7] Ist Italiano Tecnol IIT, Ctr Nano Sci & Technol CNST PoliMi, I-20133 Milan, Italy
[8] CNR, Ist Sci & Tecnol Chim Giulio Natta SCITEC, I-20133 Milan, Italy
[9] Saule Technol, PL-54427 Wroclaw, Poland
[10] Wroclaw Univ Sci & Technol, Dept Nanometrol, PL-50372 Wroclaw, Poland
[11] Bydgoszcz Univ Sci & Technol, Inst Math & Phys, PL-85796 Bydgoszcz, Poland
[12] PORT Polish Ctr Technol Dev, Lukasiewicz Res Network, PL-54066 Wroclaw, Poland
[13] Univ Perugia, Dipartimento Chim Biol & Biotecnol, I-06123 Perugia, Italy
[14] UdR INSTM Perugia, I-06123 Perugia, Italy
[15] Prince Mohammad Bin Fand Univ, Coll Sci & Human Studies, Dept Nat Sci & Math, Al Khobar 31952, Saudi Arabia
基金
欧盟地平线“2020”;
关键词
flexible photovoltaics; perovskite solar cell; interface modification; bulky organic cation; long-term stability; EFFICIENT; TRANSPORT; STABILITY;
D O I
10.1021/acsaem.2c02780
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flexible perovskite solar cells triggered a vast interest within the scientific community, thanks to their broad commercialization prospects. However, the stability of these devices still poses one of the major concerns on the way to rapid industrial deployment. Here, we demonstrate an effective strategy to improve the technical aspects of this technology, improving the reliability and efficiency values of these devices. We apply large organic ammonium molecules for modifying a buried interface between a hole-transporting layer (HTL) and perovskite-absorbing material. With the 4-fluorophenethylammonium iodide (FPEAI), we achieve 18.66% efficiency for the large-area (1 cm2) flexible solar cell, a significant improvement over the pristine device without modification. The applied passivation strategy results in a better hole extraction and reduced nonradiative recombination loss at the buried interface. Moreover, we demonstrate the formation of low-dimensional perovskite phases in the vicinity of the hole-transporting material upon the incorporation of large ammonium cations. This results in a significantly enhanced thermal and light-soaking stability of fabricated devices. We obtained no loss in 1000 h of aging at 85 degrees C, no loss in 1000 h of light soaking at open circuit, and less than 10% drop in 1000 h of operation at maximum power point for the optimized passivation treatment with the FPEAI. We also demonstrate a method for monitoring the structural stability of perovskite thin films upon prolonged illumination, ensued by the amount of molecular iodine being released from the layer.
引用
收藏
页码:15114 / 15124
页数:11
相关论文
共 50 条
  • [1] Interface modification for organic and perovskite solar cells
    Wang, Chunhua
    Yang, Junliang
    [J]. SCIENCE CHINA-MATERIALS, 2016, 59 (09) : 743 - 756
  • [2] Buried Interface Modification in Perovskite Solar Cells: A Materials Perspective
    Gao, Zhi-Wen
    Wang, Yong
    Choy, Wallace C. H.
    [J]. ADVANCED ENERGY MATERIALS, 2022, 12 (20)
  • [3] Synergistic Effect of RbBr Interface Modification on Highly Efficient and Stable Perovskite Solar Cells
    Li, Dan
    Li, Yong
    Liu, Lidan
    Liu, Zhike
    Yuan, Ningyi
    Ding, Jianning
    Wang, Dapeng
    Liu, Shengzhong Frank
    [J]. ACS OMEGA, 2021, 6 (21): : 13766 - 13773
  • [4] Halide Substituted Ammonium Salt Optimized Buried Interface for Efficient and Stable Flexible Perovskite Solar Cells
    An, Ziqi
    Zhu, Yanqing
    Luo, Gan
    Hou, Peiran
    Hu, Min
    Li, Wangnan
    Huang, Fuzhi
    Cheng, Yi-Bing
    Park, Hyesung
    Lu, Jianfeng
    [J]. ADVANCED ENERGY MATERIALS, 2023, 13 (48)
  • [5] Multifunctional buried interface modification for efficient and stable SnO2-based perovskite solar cells
    Wu, Rui
    Meng, Junhua
    Shi, Yiming
    Xia, Zhengchang
    Yan, Chunxia
    Zhang, Lisheng
    Liu, Wenkang
    Zhao, Jinliang
    Deng, Jinxiang
    Zhang, Xingwang
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (21) : 12672 - 12680
  • [6] Molecular Bridge on Buried Interface for Efficient and Stable Perovskite Solar Cells
    Guo, Haodan
    Xiang, Wanchun
    Fang, Yanyan
    Li, Jingrui
    Lin, Yuan
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (34)
  • [7] Chemical Design of Organic Interface Modifiers for Highly Efficient and Stable Perovskite Solar Cells
    Kim, Seul-Gi
    Zhu, Kai
    [J]. ADVANCED ENERGY MATERIALS, 2023, 13 (25)
  • [8] Surface Energy Engineering of Buried Interface for Highly Stable Perovskite Solar Cells with Efficiency Over 25%
    Su, Hang
    Xu, Zhuo
    He, Xilai
    Yao, Yuying
    Zheng, Xinxin
    She, Yutong
    Zhu, Yujie
    Zhang, Jing
    Liu, Shengzhong
    [J]. ADVANCED MATERIALS, 2024, 36 (02)
  • [9] Buried Interface Dielectric Layer Engineering for Highly Efficient and Stable Inverted Perovskite Solar Cells and Modules
    Li, Huan
    Xie, Guanshui
    Wang, Xin
    Li, Sibo
    Lin, Dongxu
    Fang, Jun
    Wang, Daozeng
    Huang, Weixin
    Qiu, Longbin
    [J]. ADVANCED SCIENCE, 2023, 10 (19)
  • [10] Mixed bulky cations for efficient and stable Ruddlesden-Popper perovskite solar cells
    Shi, Jishan
    Jin, Xing
    Wu, Youzhi
    Shao, Ming
    [J]. APL MATERIALS, 2020, 8 (10):