Two types of smooth positons for nonlocal Fokas-Lenells equation

被引:5
|
作者
Wang, B. [1 ]
Zhang, Z. [2 ]
Li, B. [2 ]
机构
[1] Ningbo Univ Technol, Robot Inst, Ningbo 315211, Peoples R China
[2] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Darboux transformation; smooth positon; nonlocal Fokas-Lenells equation;
D O I
10.1142/S0217979220501489
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we propose a new type of smooth positon called novel rational positon. Similar to classic smooth positons, the modulus square of novel rational positons can also be decomposed. But there is a fundamental difference between classic smooth positons and novel rational positons in terms of algebraic structure and dynamical properties. Specific propositions and conclusions are given in Secs. 2 and 3. Further, these two types of smooth positons sitting on a periodic line wave background are derived for the first time. In addition, a new nonlinear superposition between these two types of smooth positions and a kink soliton is constructed.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Breather Positons and Rogue Waves for the Nonlocal Fokas-Lenells Equation
    Wang, Chun
    Fan, Rong
    Zhang, Zhao
    Li, Biao
    ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
  • [2] Exact solutions of nonlocal Fokas-Lenells equation
    Zhang, Qinyu
    Zhang, Yi
    Ye, Rusuo
    APPLIED MATHEMATICS LETTERS, 2019, 98 : 336 - 343
  • [3] Rogue Waves of the Fokas-Lenells Equation
    He, Jingsong
    Xu, Shuwei
    Porsezian, Kuppuswamy
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2012, 81 (12)
  • [4] New types of chirped soliton solutions for the Fokas-Lenells equation
    Triki, Houria
    Wazwaz, Abdul-Majid
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2017, 27 (07) : 1596 - 1601
  • [5] THE FOKAS-LENELLS EQUATION ON THE FINITE INTERVAL
    Xiao, Yu
    Fan, Engui
    Xu, Jian
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (03) : 852 - 876
  • [6] N-soliton solutions for the nonlocal Fokas-Lenells equation via RHP
    Li, Jian
    Xia, Tiecheng
    APPLIED MATHEMATICS LETTERS, 2021, 113
  • [7] Integrability and multisoliton solutions of the reverse space and/or time nonlocal Fokas-Lenells equation
    Zhang, Wen-Xin
    Liu, Yaqing
    NONLINEAR DYNAMICS, 2022, 108 (03) : 2531 - 2549
  • [8] Soliton surfaces induced by the Fokas-Lenells equation
    Yesmakhanova, Kuralay
    Zhassybayeva, Meruyert
    Myrzakulov, Ratbay
    XXVI INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES, 2019, 1416
  • [9] Optical wave structures to the Fokas-Lenells equation
    Hosseini, K.
    Mirzazadeh, M.
    Vahidi, J.
    Asghari, R.
    OPTIK, 2020, 207
  • [10] Soliton solutions, Darboux transformation of the variable coefficient nonlocal Fokas-Lenells equation
    Zhang, Xi
    Wang, Yu-Feng
    Yang, Sheng-Xiong
    NONLINEAR DYNAMICS, 2024, 112 (04) : 2869 - 2882