Unfolding the Manifold in Generative Topographic Mapping

被引:0
|
作者
Cruz-Barbosa, Raul [1 ]
Vellido, Alfredo [1 ]
机构
[1] Univ Politecn Cataluna, ES-08034 Barcelona, Spain
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generative Topographic Mapping (GTM) is a probabilistic latent variable model for multivariate data clustering and visualization. It tries to capture the relevant data structure by defining a low-dimensional manifold embedded in the high-dimensional data space. This requires the assumption that the data can be faithfully represented by a manifold of much lower dimension than that of the observed space. Even when this assumption holds, the approximation of the data may, for some datasets, require plenty of folding, resulting in an entangled manifold and in breaches of topology preservation that would hamper data visualization and cluster definition. This can be partially avoided by modifying the GTM learning procedure so as to penalize divergences between the Euclidean distances from the data to the model prototypes and the corresponding geodesic distances alone the manifold. We define and assess this strategy, comparing it to the performance of the standard GTM, using several artificial datasets.
引用
收藏
页码:392 / 399
页数:8
相关论文
共 50 条
  • [1] Collaborative Generative Topographic Mapping
    Ghassany, Mohamad
    Grozavu, Nistor
    Bennani, Younes
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2012, PT II, 2012, 7664 : 591 - 598
  • [2] Relational generative topographic mapping
    Gisbrecht, Andrej
    Mokbel, Bassam
    Hammer, Barbara
    [J]. NEUROCOMPUTING, 2011, 74 (09) : 1359 - 1371
  • [3] Geodesic Generative Topographic Mapping
    Cruz-Barbosa, Raul
    Vellido, Alfredo
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2008, PROCEEDINGS, 2008, 5290 : 113 - 122
  • [4] Developments of the generative topographic mapping
    Bishop, CM
    Svensén, M
    Williams, CKI
    [J]. NEUROCOMPUTING, 1998, 21 (1-3) : 203 - 224
  • [5] GTM: The generative topographic mapping
    Bishop, CM
    Svensen, M
    Williams, CKI
    [J]. NEURAL COMPUTATION, 1998, 10 (01) : 215 - 234
  • [6] The block generative topographic mapping
    Priam, Rodolphe
    Nadif, Mohamed
    Govaert, Gerard
    [J]. ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, PROCEEDINGS, 2008, 5064 : 13 - +
  • [7] Generative topographic mapping by deterministic annealing
    Choi, Jong Youl
    Qiu, Judy
    Pierce, Marlon
    Fox, Geoffrey
    [J]. ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 47 - 56
  • [8] Generative Topographic Mapping of Conformational Space
    Horvath, Dragos
    Baskin, Igor
    Marcou, Gilles
    Varnek, Alexandre
    [J]. MOLECULAR INFORMATICS, 2017, 36 (10)
  • [9] Selective smoothing of the generative topographic mapping
    Vellido, A
    El-Deredy, W
    Lisboa, PJG
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (04): : 847 - 852
  • [10] Relevance learning in generative topographic mapping
    Gisbrecht, Andrej
    Hammer, Barbara
    [J]. NEUROCOMPUTING, 2011, 74 (09) : 1351 - 1358