High-performance singular value decomposition

被引:0
|
作者
Skillicorn, DB [1 ]
Yang, XL [1 ]
机构
[1] Queens Univ, Dept Comp & Informat Sci, Kingston, ON K7L 3N6, Canada
关键词
dimensionality reduction; SVD; incremental algorithms; parallel computing; cost modeling;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Singular value decomposition is, among other things, a dimensionality reduction technique. It is used in data mining as a way to improve similarity measurements and as a preprocessing step before automatic clustering. We present several parallel algorithms for computing the SVD of a large matrix. Given a matrix with n rows and m columns, p-fold speedup of the computation part is achieved. Communication overheads range from phi (m(2)) to phi (pm(2)), which is smaller than the communication overheads of techniques based on parallelizing the inner loop of Hestenes-style algorithms.
引用
收藏
页码:401 / 424
页数:24
相关论文
共 50 条
  • [1] High-performance Hardware Architecture for Tensor Singular Value Decomposition
    Deng, Chunhua
    Yin, Miao
    Liu, Xiao-Yang
    Wang, Xiaodong
    Yuan, Bo
    [J]. 2019 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2019,
  • [2] A high performance prediction of HPV genotypes by Chaos game representation and singular value decomposition
    Tanchotsrinon, Watcharaporn
    Lursinsap, Chidchanok
    Poovorawan, Yong
    [J]. BMC BIOINFORMATICS, 2015, 16 : 1 - 13
  • [3] Parallel Algorithm Based on Singular Value Decomposition for High Performance Training of Neural Networks
    Lozito, Gabriele Maria
    Lucaferri, Valentina
    Parodi, Mauro
    Radicioni, Martina
    Fulginei, Francesco Riganti
    Salvini, Alessandro
    [J]. COMPUTATIONAL SCIENCE - ICCS 2019, PT V, 2019, 11540 : 581 - 587
  • [4] A high performance prediction of HPV genotypes by Chaos game representation and singular value decomposition
    Watcharaporn Tanchotsrinon
    Chidchanok Lursinsap
    Yong Poovorawan
    [J]. BMC Bioinformatics, 16
  • [5] Computing the singular value decomposition with high relative accuracy
    Demmel, J
    Gu, M
    Eisenstat, S
    Slapnicar, I
    Veselic, K
    Drmac, Z
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 299 (1-3) : 21 - 80
  • [6] The High-performance Value Stream
    Metternich J.
    Schaede C.
    [J]. 1600, Carl Hanser Verlag, Kolbergerstrasse 22, Munchen, D-81679, Germany (115): : 216 - 219
  • [7] FAST SINGULAR VALUE THRESHOLDING WITHOUT SINGULAR VALUE DECOMPOSITION
    Cai, Jian-Feng
    Osher, Stanley
    [J]. METHODS AND APPLICATIONS OF ANALYSIS, 2013, 20 (04) : 335 - 352
  • [8] High-Performance QR Decomposition for FPGAs
    Langhammer, Martin
    Pasca, Bogdan
    [J]. PROCEEDINGS OF THE 2018 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA'18), 2018, : 183 - 188
  • [9] Federated singular value decomposition for high-dimensional data
    Anne Hartebrodt
    Richard Röttger
    David B. Blumenthal
    [J]. Data Mining and Knowledge Discovery, 2024, 38 : 938 - 975
  • [10] High order singular value decomposition for plant diversity estimation
    Bernardi, Alessandra
    Iannacito, Martina
    Rocchini, Duccio
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (04): : 557 - 591