MODELING OF AN INDUSTRIAL PROCESS OF PLEUROMUTILIN FERMENTATION USING FEED-FORWARD NEURAL NETWORKS

被引:5
|
作者
Khaouane, L. [1 ]
Benkortbi, O. [1 ]
Hanini, S. [1 ]
Si-Moussa, C. [1 ]
机构
[1] Univ Medea, LBMPT, Quartier Ain Dheb 26000, Medea, Algeria
关键词
Modeling; Pleuromutilin; Fermentation; Feed-forward neural networks; PENICILLIN FERMENTATION; DERIVATIVES; PREDICTION;
D O I
10.1590/S0104-66322013000100012
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This work investigates the use of artificial neural networks in modeling an industrial fermentation process of Pleuromutilin produced by Pleurotus mutilus in a fed-batch mode. Three feed-forward neural network models characterized by a similar structure (five neurons in the input layer, one hidden layer and one neuron in the output layer) are constructed and optimized with the aim to predict the evolution of three main bioprocess variables: biomass, substrate and product. Results show a good fit between the predicted and experimental values for each model (the root mean squared errors were 0.4624%-0.1234 g/L and 0.0016 mg/g respectively). Furthermore, the comparison between the optimized models and the unstructured kinetic models in terms of simulation results shows that neural network models gave more significant results. These results encourage further studies to integrate the mathematical formulae extracted from these models into an industrial control loop of the process.
引用
收藏
页码:105 / 116
页数:12
相关论文
共 50 条
  • [1] Modeling a scrubber using feed-forward neural networks
    Milosavljevic, N
    Heikkilä, P
    [J]. TAPPI JOURNAL, 1999, 82 (03): : 197 - 201
  • [2] Optimal identification using feed-forward neural networks
    Vergara, V
    Sinne, S
    Moraga, C
    [J]. FROM NATURAL TO ARTIFICIAL NEURAL COMPUTATION, 1995, 930 : 1052 - 1059
  • [3] Evapotranspiration estimation using feed-forward neural networks
    Kisi, Ozgur
    [J]. NORDIC HYDROLOGY, 2006, 37 (03) : 247 - 260
  • [4] Magnetic hysteresis modeling via feed-forward neural networks
    Serpico, C
    Visone, C
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (03) : 623 - 628
  • [5] Isotropic vector hysteresis modeling with feed-forward neural networks
    Makaveev, D
    Dupré, L
    De Wulf, M
    Melkebeek, J
    [J]. JOURNAL OF APPLIED PHYSICS, 2002, 91 (10) : 8322 - 8324
  • [6] Modeling of quasistatic magnetic hysteresis with feed-forward neural networks
    Makaveev, D
    Dupré, L
    De Wulf, M
    Melkebeek, J
    [J]. JOURNAL OF APPLIED PHYSICS, 2001, 89 (11) : 6737 - 6739
  • [7] Multilayer feed-forward artificial neural networks for class modeling
    Marini, Federico
    Magri, Antonio L.
    Bucci, Remo
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2007, 88 (01) : 118 - 124
  • [8] Distributed restoration in optical networks using feed-forward neural networks
    Karpat, Demeter Gokisik
    Bilgen, Semih
    [J]. PHOTONIC NETWORK COMMUNICATIONS, 2006, 12 (01) : 53 - 64
  • [9] Distributed Restoration in Optical Networks using Feed-forward Neural Networks
    Demeter Gokisik Karpat
    Semih Bilgen
    [J]. Photonic Network Communications, 2006, 12 (1)
  • [10] Patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks
    Aguiar, Manuela A. D.
    Dias, Ana Paula S.
    Ferreira, Flora
    [J]. CHAOS, 2017, 27 (01)