Deep Attributed Graph Embeddings

被引:0
|
作者
Fersini, Elisabetta [1 ]
Mottadelli, Simone [1 ]
Carbonera, Michele [1 ]
Messina, Enza [1 ]
机构
[1] Univ Milano Bicocca, Viale Sarca 336, I-20126 Milan, Italy
关键词
Attributed Graph Embedding; Semantic proximity; Structural proximity;
D O I
10.1007/978-3-031-13448-7_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Representation Learning aims to learn a rich and low-dimensional node embedding while preserving the graph properties. In this paper, we propose a novel Deep Attributed Graph Embedding (DAGE) that learns node representations based on both the topological structure and node attributes. DAGE a is able to capture, in a linear time and with a limited number of trainable parameters, the highly non-linear properties of attributed graphs. The proposed approach outperforms the current state-of-the-art approaches on node classification and node clustering tasks at a lower computational costs.
引用
收藏
页码:181 / 192
页数:12
相关论文
共 50 条
  • [1] GAGE: Geometry Preserving Attributed Graph Embeddings
    Kanatsoulis, Charilaos, I
    Sidiropoulos, Nicholas D.
    [J]. WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 439 - 448
  • [2] Deep linear graph attention model for attributed graph clustering
    Liao, Huifa
    Hu, Jie
    Li, Tianrui
    Du, Shengdong
    Peng, Bo
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 246
  • [3] CAGE: Constrained deep Attributed Graph Embedding
    Nozza, Debora
    Fersini, Elisabetta
    Messina, Enza
    [J]. INFORMATION SCIENCES, 2020, 518 : 56 - 70
  • [4] Deep Learning and Graph Embeddings for Network Biology
    Guzzi, Pietro Hiram
    Zitnik, Marinka
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (02) : 653 - 654
  • [5] Anomaly Detection with Deep Graph Autoencoders on Attributed Networks
    Zhu, Dali
    Ma, Yuchen
    Liu, Yinlong
    [J]. 2020 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2020, : 749 - 754
  • [6] Deep graph transformation for attributed, directed, and signed networks
    Guo, Xiaojie
    Zhao, Liang
    Homayoun, Houman
    Dinakarrao, Sai Manoj Pudukotai
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 63 (06) : 1305 - 1337
  • [7] Fuzzy-Based Deep Attributed Graph Clustering
    Yang, Yue
    Su, Xiaorui
    Zhao, Bowei
    Li, Guodong
    Hu, Pengwei
    Zhang, Jun
    Hu, Lun
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (04) : 1951 - 1964
  • [8] Attributed Graph Clustering: A Deep Attentional Embedding Approach
    Wang, Chun
    Pan, Shirui
    Hu, Ruiqi
    Long, Guodong
    Jiang, Jing
    Zhang, Chengqi
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3670 - 3676
  • [9] Deep Fraud Detection on Non-attributed Graph
    Wang, Chen
    Dou, Yingtong
    Chen, Min
    Chen, Jia
    Liu, Zhiwei
    Yu, Philip S.
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 5470 - 5473
  • [10] Deep graph transformation for attributed, directed, and signed networks
    Xiaojie Guo
    Liang Zhao
    Houman Homayoun
    Sai Manoj Pudukotai Dinakarrao
    [J]. Knowledge and Information Systems, 2021, 63 : 1305 - 1337