Non-parametric e-mixture of Density Functions

被引:0
|
作者
Hino, Hideitsu [1 ]
Takano, Ken [2 ]
Akaho, Shotaro [3 ]
Murata, Noboru [2 ]
机构
[1] Univ Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
[2] Waseda Univ, Shinjuku Ku, Okubo 3-4-1, Tokyo 1698555, Japan
[3] AIST, 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
关键词
Mixture model; Information geometry; Non-parametric method; DIVERGENCE ESTIMATION;
D O I
10.1007/978-3-319-46672-9_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mixture modeling is one of the simplest ways to represent complicated probability density functions, and to integrate information from different sources. There are two typical mixtures in the context of information geometry, the m- and e-mixtures. This paper proposes a novel framework of non-parametric e-mixture modeling by using a simple estimation algorithm based on geometrical insights into the characteristics of the e-mixture. An experimental result supports the proposed framework.
引用
收藏
页码:3 / 10
页数:8
相关论文
共 50 条
  • [1] Bayesian prediction of a density function in terms of e-mixture
    Yanagimoto, Takemi
    Ohnishi, Toshio
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (09) : 3064 - 3075
  • [2] ON NON-PARAMETRIC ESTIMATES OF DENSITY FUNCTIONS AND REGRESSION CURVES
    NADARAYA, EA
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1965, 10 (01): : 186 - &
  • [3] The Use of Non-Parametric Methods to Estimate Density Functions of Copulas
    Hmood, Munaf Yousif
    Hamza, Zainab Falih
    [J]. JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, 14 (04): : 492 - 507
  • [4] REMARKS ON NON-PARAMETRIC ESTIMATES FOR DENSITY FUNCTIONS AND REGRESSION CURVES
    NADARAYA, EA
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (01): : 134 - &
  • [5] Nonparametric e-Mixture Estimation
    Takano, Ken
    Hino, Hideitsu
    Akaho, Shotaro
    Murata, Noboru
    [J]. NEURAL COMPUTATION, 2016, 28 (12) : 2687 - 2725
  • [6] Non-parametric Mixture Models for Clustering
    Mallapragada, Pavan Kumar
    Jin, Rong
    Jain, Anil
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2010, 6218 : 334 - 343
  • [7] An adaptive approach to non-parametric estimation of dynamic probability density functions
    Pana, Cristian
    Severi, Stefano
    de Abreu, Giuseppe Thadeu Freitas
    [J]. PROCEEDINGS OF THE 2016 13TH WORKSHOP ON POSITIONING, NAVIGATION AND COMMUNICATIONS (WPNC), 2016,
  • [8] Non-parametric Bayesian inference for continuous density hidden Markov mixture model
    Bathaee, Najmeh
    Sheikhzadeh, Hamid
    [J]. STATISTICAL METHODOLOGY, 2016, 33 : 256 - 275
  • [9] Non-parametric k-sample tests: Density functions vs distribution functions
    Martinez-Camblor, Pablo
    de Una-Alvarez, Jacobo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (09) : 3344 - 3357
  • [10] Non-parametric estimation of mixture model order
    Corona, Enrique
    Nutter, Brian
    Mitra, Sunanda
    [J]. 2008 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS & INTERPRETATION, 2008, : 145 - 148