Gaussian Mixture Multiple-Model Multi-Bernoulli Filters for Nonlinear Models Via Unscented Transforms

被引:0
|
作者
Jiang, Tongyang [1 ,2 ]
Liu, Meiqin [1 ,2 ]
Wang, Xie [2 ]
Zhang, Senlin [2 ]
机构
[1] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Coll Elect Engn, Hangzhou 310027, Zhejiang, Peoples R China
关键词
RANDOM FINITE SETS; MULTITARGET;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The multiple-model multi-Bernoulli (MM-MB) filter is a new attractive approach for estimating multiple maneuvering targets in the presence of clutter, missed detection and data association uncertainty. In this paper, we extend the Gaussian Mixture (GM)MM-MB filter to nonlinear models by using unscented transform techniques. Moreover, in order to improve the robustness and numerical stability of the unscented Kalman (UK) GM-MM-MB filtering algorithm, we propose the squareroot UK (SUK) GM implementation of the MM-MB filter for nonlinear models. A numerical example is presented to verify the effectiveness of the UK-GM-MM-MB and SUK-GM-MM-MB filtering approaches. Simulation results also show that the SUK-GM-MM-MB filtering approach produces the same filtering accuracy as the UK-GM-MM-MB filtering approach.
引用
收藏
页码:1262 / 1269
页数:8
相关论文
共 50 条
  • [1] Implementation of multiple-model multi-Bernoulli filter for nonlinear models
    College of Electrical Engineering, Zhejiang University, Hangzhou
    310027, China
    [J]. Huazhong Ligong Daxue Xuebao, 9 (7-12 and 18): : 7 - 12
  • [2] On multiple-model extended target multi-Bernoulli filters
    Jiang, Tongyang
    Liu, Meiqin
    Fan, Zhen
    Zhang, Senlin
    [J]. DIGITAL SIGNAL PROCESSING, 2016, 59 : 76 - 85
  • [3] Multiple-Model Bernoulli Filters-Part I: A Gaussian Mixture Implementation
    Jiang, Tongyang
    [J]. PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 4819 - 4824
  • [4] Multiple Model Multi-Bernoulli Filters for Manoeuvering Targets
    Dunne, Darcy
    Kirubarajan, Thia
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2013, 49 (04) : 2679 - 2692
  • [5] Gaussian implementation of the multi-Bernoulli mixture filter
    Garcia-Fernandez, Angel E.
    Xia, Yuxuan
    Granstrom, Karl
    Svensson, Lennart
    Williamst, Jason L.
    [J]. 2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [6] Gating Technique for the Gaussian Mixture Multi-Bernoulli Filter
    Jiang, Tongyang
    Liu, Meiqin
    Zhang, Senlin
    Sheng, Weihua
    [J]. 2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 1096 - 1101
  • [7] Multiple Model Poisson Multi-Bernoulli Mixture Filter for Maneuvering Targets
    Li, Guchong
    Kong, Lingjiang
    Yi, Wei
    Li, Xiaolong
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (03) : 3143 - 3154
  • [8] Multiple-Model Cardinality Balanced Multitarget Multi-Bernoulli Filter for Tracking Maneuvering Targets
    Yuan, Xianghui
    Lian, Feng
    Han, Chongzhao
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [9] A gaussian mixture extended-target multi-Bernoulli filter
    Zhang, Guanghua
    Lian, Feng
    Han, Chongzhao
    Yao, Lingling
    [J]. Lian, Feng, 1600, Xi'an Jiaotong University (48): : 9 - 14
  • [10] Analysis of recycling performance in Poisson multi-Bernoulli mixture filters
    Xie, Xingxiang
    Wang, Yang
    [J]. 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2021, : 1121 - 1127