PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery

被引:584
|
作者
Chan, Juliana M. [4 ]
Zhang, Liangfang [5 ]
Yuet, Kai P. [2 ,3 ]
Liao, Grace [2 ,3 ]
Rhee, June-Wha [1 ]
Langer, Robert [2 ,3 ]
Farokhzad, Omid C. [1 ]
机构
[1] Harvard Univ, Brigham & Womens Hosp, Sch Med, Lab Nanomed & Biomat,Dept Anesthesiol, Boston, MA 02115 USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[4] MIT, Dept Biol, Cambridge, MA 02139 USA
[5] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
Controlled drug release; Drug delivery; Liposome; Nanoparticle; Polyethylene oxide; Self-assembly; POLYMERIC MICELLE FORMULATION; PHASE-II TRIAL; CREMOPHOR-FREE; GENEXOL-PM; IN-VIVO; LIPOSOMAL DOXORUBICIN; KAPOSIS-SARCOMA; CANCER; PACLITAXEL; CARRIERS;
D O I
10.1016/j.biomaterials.2008.12.013
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Current approaches to encapsulate and deliver therapeutic compounds have focused on developing liposomal and biodegradable polymeric nanoparticles (NPs), resulting in clinically approved therapeutics Such as Doxil/Caelyx and Genexol-PM, respectively. Our group recently reported the development of biodegradable core-shell NP systems that combined the beneficial properties of liposomal and polymeric NPs for controlled drug delivery. Herein we report the parameters that alter the biological and physicochemical characteristics, Stability, drug release properties and cyrotoxicity of these core-shell NPs. We further define scalable processes for the formulation of these NPs in a reproducible manner. These core-shell NPs consist of (i) a poly(D,L-lactide-co-glycolide) hydrophobic core, (ii) a soybean lecithin monolayer, and (iii) a poly(ethylene glycol) shell, and were synthesized by a modified nanoprecipitation method combined with self-assembly. Preparation of the NPs showed that various folanulation parameters such as the lipid/polymer mass ratio and lipid/lipid-PEG molar ratio controlled NP physical stability and size. We encapsulated a model chemotherapy drug, docetaxel, in the NPs and showed that the amount Of lipid coverage affected its drug release kinetics. Next, we demonstrated a potentially scalable process for the formulation, purification, and storage of NPs. Finally, we tested the cytotoxicity Using MTT assays on two model human cell lines, HeLa and HepG2, and demonstrated the biocompatibility of these particles in vitro. Our data suggest that the PLGA-lecithin-PEG core-shell NPs may be a useful new controlled release drug delivery system. Published by Elsevier Ltd.
引用
收藏
页码:1627 / 1634
页数:8
相关论文
共 50 条
  • [1] PLGA-LECITHIN-PEG CORE-SHELL NANOPARTICLES FOR CANCER TARGETED THERAPY
    Zheng, Mingbin
    Gong, Ping
    Jia, Dongxue
    Zheng, Cuifang
    Ma, Yifan
    Cai, Lintao
    [J]. NANO LIFE, 2012, 2 (01)
  • [2] PLGA-lecithin-PEG-folate core-shell nanoparticles for cisplatin-prodrug targeted delivery
    Zheng, Mingbin
    Gong, Ping
    Jia, Dongxue
    Lu, Yangyang
    Zheng, Cuifang
    Zhao, Pengfei
    Cai, Lintao
    [J]. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2016, 12 (02) : 539 - 539
  • [3] AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery
    Aravind, Athulya
    Jeyamohan, Prashanti
    Nair, Remya
    Veeranarayanan, Srivani
    Nagaoka, Yutaka
    Yoshida, Yasuhiko
    Maekawa, Toru
    Kumar, D. Sakthi
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2012, 109 (11) : 2920 - 2931
  • [4] Polypyrrole coated PLGA core-shell nanoparticles for drug delivery and photothermal therapy
    Liu, Ming
    Xu, Na
    Liu, Wensen
    Xie, Zhigang
    [J]. RSC ADVANCES, 2016, 6 (87): : 84269 - 84275
  • [5] Core-shell structure of PLA-PEG nanoparticles used for drug delivery
    Riley, T
    Heald, CR
    Stolnik, S
    Garnett, MC
    Illum, L
    Davis, SS
    King, SM
    Heenan, RK
    Purkiss, SC
    Barlow, RJ
    Gellert, PR
    Washington, C
    [J]. LANGMUIR, 2003, 19 (20) : 8428 - 8435
  • [6] Core-shell nanoparticles of carboxy methyl cellulose and compritol-PEG for antiretroviral drug delivery
    Joshy, K. S.
    Snigdha, S.
    George, Anne
    Kalarikkal, Nandakumar
    Pothen, Laly A.
    Thomas, Sabu
    [J]. CELLULOSE, 2017, 24 (11) : 4759 - 4771
  • [7] Bioinspired Core-Shell Nanoparticles for Hydrophobic Drug Delivery
    Yang, Guangze
    Liu, Yun
    Wang, Haofei
    Wilson, Russell
    Hui, Yue
    Yu, Lei
    Wibowo, David
    Zhang, Cheng
    Whittaker, Andrew K.
    Middelberg, Anton P. J.
    Zhao, Chun-Xia
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (40) : 14357 - 14364
  • [8] Magnetic core-shell nanoparticles for drug delivery by nebulization
    Navin Kumar Verma
    Kieran Crosbie-Staunton
    Amro Satti
    Shane Gallagher
    Katie B Ryan
    Timothy Doody
    Colm McAtamney
    Ronan MacLoughlin
    Paul Galvin
    Conor S Burke
    Yuri Volkov
    Yurii K Gun’ko
    [J]. Journal of Nanobiotechnology, 11
  • [9] MAGNETIC CORE-SHELL NANOPARTICLES FOR DRUG DELIVERY BY NEBULIZATION
    Verma, N. K.
    Crosbie-Staunton, K.
    Satti, A.
    Gallagher, S.
    Ryan, K. B.
    Doody, T.
    McAtamney, C.
    Burke, C. S.
    Galvin, P.
    Volkov, Y.
    Gun'ko, Y. K.
    MacLoughlin, R.
    [J]. JOURNAL OF AEROSOL MEDICINE AND PULMONARY DRUG DELIVERY, 2013, 26 (02) : A32 - A33
  • [10] Magnetic core-shell nanoparticles for drug delivery by nebulization
    Verma, Navin Kumar
    Crosbie-Staunton, Kieran
    Satti, Amro
    Gallagher, Shane
    Ryan, Katie B.
    Doody, Timothy
    McAtamney, Colm
    MacLoughlin, Ronan
    Galvin, Paul
    Burke, Conor S.
    Volkov, Yuri
    Gun'ko, Yurii K.
    [J]. JOURNAL OF NANOBIOTECHNOLOGY, 2013, 11