Types of solutions of the variable-coefficient nonlinear Schrodinger equation with symbolic computation

被引:86
|
作者
Liu, Wen-Jun [1 ]
Tian, Bo [1 ,2 ]
Zhang, Hai-Qiang [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevE.78.066613
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By using Hirota's bilinear method and symbolic computation, solutions for a variable-coefficient nonlinear Schrodinger equation are obtained theoretically. It is found that the type of the solutions changes with the different choices of the group-velocity dispersion coefficient beta(2)(z). According to those solutions, the relevant properties and features of physical and optical interest are illustrated. In addition, an effective technique for controlling the shape of the pulses is presented. The results of this paper will be valuable to the study of the future development of ultrahigh rate and long-distance optical communication systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Symbolic computation on soliton solutions for variable-coefficient nonlinear Schrodinger equation in nonlinear optics
    Liu, Wen-Jun
    Tian, Bo
    OPTICAL AND QUANTUM ELECTRONICS, 2012, 43 (11-15) : 147 - 162
  • [2] Transformations and Soliton Solutions for a Variable-coefficient Nonlinear Schrodinger Equation in the Dispersion Decreasing Fiber with Symbolic Computation
    Zeng, Zhi-Fang
    Liu, Jian-Guo
    Jiang, Yan
    Nie, Bin
    FUNDAMENTA INFORMATICAE, 2016, 145 (02) : 207 - 219
  • [3] Symbolic computation on soliton solutions for variable-coefficient nonlinear Schrödinger equation in nonlinear optics
    Wen-Jun Liu
    Bo Tian
    Optical and Quantum Electronics, 2012, 43 : 147 - 162
  • [4] Nonautonomous soliton solutions of variable-coefficient fractional nonlinear Schrodinger equation
    Wu, Gang-Zhou
    Dai, Chao-Qing
    APPLIED MATHEMATICS LETTERS, 2020, 106
  • [5] Multi-soliton solutions and a Backlund transformation for a generalized variable-coefficient higher-order nonlinear Schrodinger equation with symbolic computation
    Meng, Xiang-Hua
    Liu, Wen-Jun
    Zhu, Hong-Wu
    Zhang, Chun-Yi
    Tian, Bo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (01) : 97 - 107
  • [6] On a variable-coefficient modified KP equation and a generalized variable-coefficient KP equation with computerized symbolic computation
    Gao, YT
    Tian, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2001, 12 (06): : 819 - 833
  • [7] Soliton Solutions for a Generalized Inhomogeneous Variable-Coefficient Hirota Equation with Symbolic Computation
    Wang, Pan
    Tian, Bo
    Liu, Wen-Jun
    Li, Min
    Sun, Kun
    STUDIES IN APPLIED MATHEMATICS, 2010, 125 (02) : 213 - 222
  • [8] ANALYTIC DARK SOLITON SOLUTIONS FOR A GENERALIZED VARIABLE-COEFFICIENT HIGHER-ORDER NONLINEAR SCHRODINGER EQUATION IN OPTICAL FIBERS USING SYMBOLIC COMPUTATION
    Meng, Xiang-Hua
    Sun, Zhi-Yuan
    Zhang, Chun-Yi
    Tian, Bo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (04): : 499 - 509
  • [9] Soliton-like solutions of a generalized variable-coefficient higher order nonlinear Schrodinger equation from inhomogeneous optical fibers with symbolic computation
    Li, Juan
    Zhang, Hai-Qiang
    Xu, Tao
    Zhang, Ya-Xing
    Tian, Bo
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (44) : 13299 - 13309
  • [10] Solitons for a generalized variable-coefficient nonlinear Schrodinger equation
    Wang Huan
    Li Biao
    CHINESE PHYSICS B, 2011, 20 (04)