Integration of Multispectral and C-Band SAR Data for Crop Classification

被引:6
|
作者
Iannini, L. [1 ]
Molijn, R. A. [1 ]
Hanssen, R. F. [1 ]
机构
[1] Delft Univ Technol, Geosci & Remote Sensing Dept, Delft, NL, Netherlands
关键词
Crop classification; sensor integration; maximum likelihood; SAR polarimetry; AGRICULTURAL CROPS; LANDSAT TM; ERS-1; SAR; STATISTICS; IMAGES;
D O I
10.1117/12.2029330
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The paper debates the impact of sensor configuration diversity on the crop classification performance. More specifically, the analysis accounts for multi-temporal and polarimetric C-Band SAR information used individually and in synergy with Multispectral imagery. The dataset used for the investigation comprises several multi-angle Radarsat-2 (RS2) full-pol acquisitions and RapidEye (RE) images both at fine resolution collected over the Indian Head (Canada) agricultural site area and spanning the summer crop growth cycle from May to September. A quasi-Maximum Likelihood (ML) classification approach applied at per-field level has been adopted to integrate the different data sources. The analysis provided evidence on the overall accuracy enhancement with respect to the individual sensor performances, with 4%-8% increase over a single RE image, a 40%-10% increase over a single 1-pol/full-pol image and 15%-0% increase over multitemporal 1-pol/full-pol RS2 series respectively. A more detailed crop analysis revealed that in particular canola and the cereals benefit from the integration, whereas lentil and flax can experience similar or worse performance when compared to the RE-based classification. Comments and suggestions for further development are presented.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Crop classification using multiconfiguration C-band SAR data
    Del Frate, F
    Schiavon, G
    Solimini, D
    Borgeaud, M
    Hoekman, DH
    Vissers, MAM
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (07): : 1611 - 1619
  • [2] Integration of multitemporal/polarization C-band SAR data sets for land-cover classification
    Park, N. -W.
    Chi, K. -H.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (16) : 4667 - 4688
  • [3] CROP CLASSIFICATION FROM C-BAND POLARIMETRIC RADAR DATA
    FOODY, GM
    MCCULLOCH, MB
    YATES, WB
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1994, 15 (14) : 2871 - 2885
  • [4] Classification of crop and soil homogenous zones using multipolarization C-band SAR
    Bugden, J. L.
    Pattey, E.
    McNairn, H.
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2009, 35 (02) : 130 - 140
  • [5] Polarimetric classification of C-band SAR data for forest density characterization
    Varghese, A. O.
    Joshi, A. K.
    [J]. CURRENT SCIENCE, 2015, 108 (01): : 100 - 106
  • [6] The sensitivity of C-Band polarimetric SAR to crop condition
    McNairn, H
    Decker, V
    Murnaghan, K
    [J]. IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 1471 - 1473
  • [7] Evaluation of C-band SAR data for wetlands mapping
    Baghdadi, N
    Bernier, M
    Gauthier, R
    Neeson, I
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2001, 22 (01) : 71 - 88
  • [8] Assessment of rice crop biophysical parameters using Sentinel-1 C-band SAR data
    Kushwaha, Amit
    Dave, Rucha
    Kumar, Gaurav
    Saha, Koushik
    Khan, Armugha
    [J]. ADVANCES IN SPACE RESEARCH, 2022, 70 (12) : 3833 - 3844
  • [9] COMPARISON OF C-BAND AND X-BAND POLARIMETRIC SAR DATA FOR RIVER ICE CLASSIFICATION ON THE PEACE RIVER
    Los, H.
    Osinska-Skotak, K.
    Pluto-Kossakowska, J.
    Bernier, M.
    Gauthier, Y.
    Jasek, M.
    Roth, A.
    [J]. XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 543 - 548
  • [10] WISHART SUPERVISED CLASSIFICATION RESULTS OF C-BAND POLARIMETRIC GB-SAR IMAGE DATA
    Kang, Moon-Kyung
    Kim, Kwang-Eun
    Cho, Seong-Jun
    Lee, Hoonyol
    Lee, Jae-Hee
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 459 - 462