共 49 条
Short communication: Effect of supplemental zinc source with and without evaporative cooling on systemic and mammary metabolism of lactating dairy cows during summer
被引:1
|作者:
Marins, Thiago N.
[1
]
Monteiro, Ana P. A.
[1
]
Weng, Xisha
[1
]
Guo, Jinru
[1
]
Rivas, Ruth M. Orellana
[1
]
Gao, Jing
[1
]
Bernard, John K.
[1
]
Tomlinson, Dana J.
[2
]
DeFrain, Jeffrey M.
[2
]
Tao, Sha
[1
]
机构:
[1] Univ Georgia, Dept Anim & Dairy Sci, Tifton, GA 31793 USA
[2] Zinpro Corp, Eden Prairie, MN 55344 USA
基金:
美国食品与农业研究所;
关键词:
heat stress;
zinc;
metabolism;
AMINO-ACID COMPLEX;
HEAT-STRESS;
PERFORMANCE;
INTEGRITY;
EXPRESSION;
D O I:
10.3168/jds.2020-18380
中图分类号:
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号:
0905 ;
摘要:
The negative effects of heat stress partly result from disturbed systemic metabolic responses and possibly altered mammary gland metabolism of lactating dairy cows. Our previous research reported that supplemental dietary Zn sources may affect milk fat synthesis of lactating cows during summer. Thus, our objective was to evaluate the systemic and mammary metabolism of cows fed 2 supplemental Zn sources under 2 environmental conditions. Multiparous lactating Holstein cows (n = 72; days in milk: 99.7 +/- 13.4 d; parity: 2.9 +/- 0.3) were randomly assigned to 4 treatments in a 2 x 2 factorial arrangement. Treatments included 2 different environments: cooled (CL) using fans and misters or noncooled (NC), and 2 supplemental Zn sources: 75 mg of Zn hydroxychloride/kg of DM (IOZ) or 35 mg of Zn hydroxychloride/kg of DM + 40 mg of Zn-Met complex/kg of DM (ZMC). The 168-d experiment. was divided into baseline and environmental challenge phases, 84 d each. During the baseline phase, all cows were cooled and fed respective dietary treatments, and during the environmental challenge phase cows continued receiving the same diets but NC cows were deprived of cooling. Temperature-humidity index averaged 77.6 +/- 3.8 and 77.8 + 3.8 for CL and NC pens, respectively, during the environmental challenge phase. Plasma was collected before the baseline phase and at 1, 3, 5, 12, 22, 26, 41, 54, 61, 68, 75, and 81 d of the environmental challenge phase for metabolites and insulin analyses. Mammary biopsies were collected before the baseline phase and at 7 and 56 d of the environmental challenge phase to measure mRNA abundance of proteins related to mammary metabolism. Compared with CL, NC reduced plasma glucose, nonesterified fatty acids, beta-hydroxybutyrate, and triglyceride concentrations, but increased insulin concentration. Cows fed ZMC had greater plasma triglyceride concentration than IOZ. Treatments had no effect on mRNA abundance of protein related to mammary fatty acid and glucose metabolism except that NC cows had greater mammary mRNA abundance of 6-phosphogluconate dehydrogenase and ATP-dependent 6-phosphofructokinase than CL cows. In conclusion, deprivation of evaporative cooling influenced the metabolism of lactating dairy cows but dietary Zn source had no apparent effect.
引用
收藏
页码:10258 / 10263
页数:6
相关论文