Dataset structure as prior information for parameter-free regularization of extreme learning machines

被引:12
|
作者
Silvestre, Leonardo Jose [1 ,2 ]
Lemos, Andre Paim [3 ]
Braga, Joao Pedro [4 ]
Braga, Antonio Padua [3 ]
机构
[1] Univ Fed Minas Gerais, Grad Program Elect Engn, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Fed Espirito Santo, Dept Comp & Elect, BR-29932540 Sao Mateus, ES, Brazil
[3] Univ Fed Minas Gerais, Dept Elect Engn, BR-31270901 Belo Horizonte, MG, Brazil
[4] Univ Fed Minas Gerais, Dept Chem, BR-31270901 Belo Horizonte, MG, Brazil
关键词
Regularization; Extreme learning machines; Affinity matrices; REGRESSION; ELM;
D O I
10.1016/j.neucom.2014.11.080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel regularization approach for Extreme Learning Machines. Regularization is performed using a priori spatial information expressed by an affinity matrix. We show that the use of this type of a priori information is similar to perform Tikhonov regularization. Furthermore, if a parameter free affinity matrix is used, like the cosine similarity matrix, regularization is performed without any need for parameter tuning. Experiments are performed using classification problems to validate the proposed approach. (C) 2015 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:288 / 294
页数:7
相关论文
共 50 条
  • [1] Parameter-Free Extreme Learning Machine for Imbalanced Classification
    Li, Li
    Zhao, Kaiyi
    Sun, Ruizhi
    Gan, Jiangzhang
    Yuan, Gang
    Liu, Tong
    NEURAL PROCESSING LETTERS, 2020, 52 (03) : 1927 - 1944
  • [2] Parameter-Free Extreme Learning Machine for Imbalanced Classification
    Li Li
    Kaiyi Zhao
    Ruizhi Sun
    Jiangzhang Gan
    Gang Yuan
    Tong Liu
    Neural Processing Letters, 2020, 52 : 1927 - 1944
  • [3] Parameter-free Image Segmentation Based on Extreme Learning Machine
    Zhang, Hongwei
    Wu, Liuai
    Yang, Yanchun
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 1578 - 1581
  • [4] Semisupervised Learning With Parameter-Free Similarity of Label and Side Information
    Zhang, Rui
    Nie, Feiping
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (02) : 405 - 414
  • [5] Regularization of Extreme Learning Machines with information of spatial relations of the projected data
    Araujo, Lourenco R. G.
    Torres, Luiz C. B.
    Silvestre, Leonardo J.
    Takahashi, Carla
    Braga, Antonio P.
    2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT 2019), 2019, : 593 - 597
  • [6] A parameter-free learning automaton scheme
    Ren, Xudie
    Li, Shenghong
    Ge, Hao
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [7] Iterative minimal residual method provides optimal regularization parameter for extreme learning machines
    Naik, Shraddha M.
    Jagannath, Ravi Prasad K.
    Kuppili, Venkatanareshbabu
    RESULTS IN PHYSICS, 2019, 13
  • [8] PARAMETER-FREE CUBIC STRUCTURE TYPES
    NIGGLI, A
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE KRISTALLGEOMETRIE KRISTALLPHYSIK KRISTALLCHEMIE, 1971, 133 : 473 - &
  • [9] Coin Betting and Parameter-Free Online Learning
    Orabona, Francesco
    Pal, David
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [10] An Efficient Parameter-Free Learning Automaton Scheme
    Di, Chong
    Liang, Qilian
    Li, Fangqi
    Li, Shenghong
    Luo, Fucai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (11) : 4849 - 4863