A class of zero divisor rings in which every graph is precisely the union of a complete graph and a complete bipartite graph

被引:1
|
作者
Nauman, Syed Khalid [1 ]
Shafee, Basmah H. [2 ]
机构
[1] King Abdulaziz Univ, Dept Math, Jeddah 21413, Saudi Arabia
[2] Umm Al Qura Univ, Dept Math, Mecca, Saudi Arabia
来源
OPEN MATHEMATICS | 2015年 / 13卷
关键词
Right (left) absorbing rings; Klein; 4-rings; Zero-divisor (di) graphs; Genus of a ring;
D O I
10.1515/math-2015-0050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, an interest is developed in estimating genus of the zero-divisor graph of a ring. In this note we investigate genera of graphs of a class of zero-divisor rings (a ring in which every element is a zero divisor). We call a ring R to be right absorbing if for a, b in R, ab is not 0, then ab = a. We first show that right absorbing rings are generalized right Klein 4-rings of characteristic two and that these are non-commutative zero-divisor local rings. The zero-divisor graph of such a ring is proved to be precisely the union of a complete graph and a complete bipartite graph. Finally, we have estimated lower and upper bounds of the genus of such a ring.
引用
收藏
页码:528 / 536
页数:9
相关论文
共 50 条
  • [1] ON LINE GRAPH OF COMPLETE BIPARTITE GRAPH
    HOFFMAN, AJ
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (02): : 883 - &
  • [2] When a zero-divisor graph is planar or a complete r-partite graph
    Akbari, S
    Maimani, HR
    Yassemi, S
    [J]. JOURNAL OF ALGEBRA, 2003, 270 (01) : 169 - 180
  • [3] Hamiltonian decompositions of the tensor product of a complete graph and a complete bipartite graph
    Manikandan, R. S.
    Paulraja, P.
    [J]. ARS COMBINATORIA, 2006, 80 : 33 - 44
  • [4] Orthogonal double cover of Complete Bipartite Graph by disjoint union of complete bipartite graphs
    El-Serafi, S.
    El-Shanawany, R.
    Shabana, H.
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2015, 6 (02) : 657 - 660
  • [5] ON THICKNESS OF COMPLETE BIPARTITE GRAPH
    BEINEKE, LW
    MOON, JW
    HARARY, F
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1964, 60 (01): : 1 - &
  • [6] COARSENESS OF COMPLETE BIPARTITE GRAPH
    BEINEKE, LW
    GUY, RK
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (05): : 1086 - &
  • [7] Complete bipartite graph is a totally irregular total graph
    Tilukay, Meilin, I
    Taihuttu, Pranaya D. M.
    Salman, A. N. M.
    Rumlawang, Francis Y.
    Leleury, Zeth A.
    [J]. ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (02) : 387 - 395
  • [8] The generalized connectivity of the line graph and the total graph for the complete bipartite graph
    Li, Yinkui
    Gu, Ruijuan
    Lei, Hui
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 : 645 - 652
  • [9] Forbidden Triples Containing a Complete Graph and a Complete Bipartite Graph of Small Order
    Yoshimi Egawa
    Michitaka Furuya
    [J]. Graphs and Combinatorics, 2014, 30 : 1149 - 1162
  • [10] Forbidden Triples Containing a Complete Graph and a Complete Bipartite Graph of Small Order
    Egawa, Yoshimi
    Furuya, Michitaka
    [J]. GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1149 - 1162