Central limit theorems for the real eigenvalues of large Gaussian random matrices

被引:13
|
作者
Simm, N. J. [1 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
关键词
Random matrix; Ginibre ensemble; Poisson eigenvalues; circular law; real eigenvalues; central limit theorem; linear statistic; non-Hermitian; FLUCTUATIONS; STATISTICS; DISTRIBUTIONS; UNIVERSALITY; PROBABILITY; NUMBER; ROOTS; ZEROS;
D O I
10.1142/S2010326317500022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let G be an N x N real matrix whose entries are independent identically distributed standard normal random variables G(ij) similar to N(0, 1). The eigenvalues of such matrices are known to form a two-component system consisting of purely real and complex conjugated points. The purpose of this paper is to show that by appropriately adapting the methods of [E. Kanzieper, M. Poplavskyi, C. Timm, R. Tribe and O. Zaboronski, Annals of Applied Probability 26(5) (2016) 2733-2753], we can prove a central limit theorem of the following form: if lambda(1),...,.lambda(NR) are the real eigenvalues of G, then for any even polynomial function P(x) and even N = 2n, we have the convergence in distribution to a normal random variable 1/root E(N-R) (Sigma (j=1) (NR) P(lambda(j)/root 2n) - E Sigma (j=1) (NR) P(lambda(j)/root 2n) ) -> N (0, sigma(2) (P)) as n -> infinity, where sigma(2) (P) = 2-root 2/2 integral(-1) (1) P(x)(2) dx.
引用
下载
收藏
页数:18
相关论文
共 50 条