REMARKS ON LAGRANGIAN INTERSECTIONS IN TORIC MANIFOLDS

被引:0
|
作者
Abreu, Miguel [1 ]
Macarini, Leonardo [2 ]
机构
[1] Inst Super Tecn, Ctr Anal Matemat Geometria & Sistema Dinam, Dept Matemat, P-1049001 Lisbon, Portugal
[2] Univ Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio De Janeiro, Brazil
关键词
FLOER COHOMOLOGY; HOLOMORPHIC DISCS; TORUS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider two natural Lagrangian intersection problems in the context of symplectic toric manifolds: displaceability of torus orbits and of a torus orbit with the real part of the toric manifold. Our remarks address the fact that one can use simple cartesian product and symplectic reduction considerations to go from basic examples to much more sophisticated ones. We show in particular how rigidity results for the above Lagrangian intersection problems in weighted projective spaces can be combined with these considerations to prove analogous results for all monotone toric symplectic manifolds. We also discuss non-monotone and/or non-Fano examples, including some with a continuum of non-displaceable torus orbits.
引用
收藏
页码:3851 / 3875
页数:25
相关论文
共 50 条
  • [1] On displaceability of pre-Lagrangian toric fibers in contact toric manifolds
    Marinkovic, A.
    Pabiniak, M.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (14)
  • [2] Lagrangian Floer theory on compact toric manifolds: survey
    Fukaya, Kenji
    Oh, Yong-Geun
    Ohta, Hiroshi
    Ono, Kaoru
    IN MEMORY OF C.C. HSIUNG: LECTURES GIVEN AT THE JDG SYMPOSIUM, LEHIGH UNIVERSITY, JUNE 2010, 2012, 17 : 229 - +
  • [3] Hamiltonian stability of Lagrangian tori in toric Kahler manifolds
    Ono, Hajime
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2007, 31 (04) : 329 - 343
  • [4] LAGRANGIAN FLOER THEORY ON COMPACT TORIC MANIFOLDS, I
    Fukaya, Kenji
    Oh, Yong-Geun
    Ohta, Hiroshi
    Ono, Kaoru
    DUKE MATHEMATICAL JOURNAL, 2010, 151 (01) : 23 - 174
  • [5] Remarks on toric manifolds whose Chern characters are positive
    Sato, Hiroshi
    Suyama, Yusuke
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (06) : 2528 - 2538
  • [6] Intersections of stable and unstable manifolds:: the skeleton of Lagrangian chaos
    Feudel, F
    Witt, A
    Gellert, M
    Kurths, J
    Grebogi, C
    Sanjuán, MAF
    CHAOS SOLITONS & FRACTALS, 2005, 24 (04) : 947 - 956
  • [7] LAGRANGIAN FLOER THEORY AND MIRROR SYMMETRY ON COMPACT TORIC MANIFOLDS
    Fukaya, Kenji
    Oh, Yong-Geun
    Ohta, Hiroshi
    Ono, Kaoru
    ASTERISQUE, 2016, (376) : 1 - +
  • [8] Hamiltonian stability of Lagrangian tori in toric Kähler manifolds
    Hajime Ono
    Annals of Global Analysis and Geometry, 2007, 31 : 329 - 343
  • [9] Basic Remarks on Lagrangian Submanifolds of Hyperkähler Manifolds
    Mboro, Rene
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (12) : 9778 - 9791
  • [10] Lagrangian Floer theory on compact toric manifolds II: bulk deformations
    Fukaya, Kenji
    Oh, Yong-Geun
    Ohta, Hiroshi
    Ono, Kaoru
    SELECTA MATHEMATICA-NEW SERIES, 2011, 17 (03): : 609 - 711